請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳政忠 | |
dc.contributor.author | YU CHAN TSAI | en |
dc.contributor.author | 蔡育展 | zh_TW |
dc.date.accessioned | 2021-06-17T02:14:27Z | - |
dc.date.available | 2020-01-04 | |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-11-13 | |
dc.identifier.citation | [1] H. Mockert, S. Schmeisser, and W. Göpel, 'Lead phthalocyanine (PbPc) as a prototype organic material for gas sensors: comparative electrical and spectroscopic studies to optimize O2 and NO2 sensing,' Sensors and Actuators, vol. 19, no. 2, pp. 159-176, 1989.
[2] M. Horrillo et al., 'Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors,' Sensors and Actuators B: Chemical, vol. 58, no. 1, pp. 325-329, 1999. [3] M. Ferroni et al., 'Nanosized thin films of tungsten-titanium mixed oxides as gas sensors,' Sensors and Actuators B: Chemical, vol. 58, no. 1, pp. 289-294, 1999. [4] F. Xia, L. T. Yang, L. Wang, and A. Vinel, 'Internet of things,' International Journal of Communication Systems, vol. 25, no. 9, p. 1101, 2012. [5] F.-C. Huang, Y.-Y. Chen, and T.-T. Wu, 'A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods,' Nanotechnology, vol. 20, no. 6, p. 065501, 2009. [6] J. Sun, J. Xu, Y. Yu, P. Sun, F. Liu, and G. Lu, 'UV-activated room temperature metal oxide based gas sensor attached with reflector,' Sensors and Actuators B: Chemical, vol. 169, pp. 291-296, 2012. [7] S. J. Qin and B. Bott, 'The sensitivity to NO2 of sandwich devices based on lead phthalocyanine and copper phthalocyanine,' Sensors and Actuators B: Chemical, vol. 3, no. 4, pp. 255-260, 1991. [8] P. Jeffery and P. Burr, 'Gas-sensing properties of polymeric silicon and germanium phthalocyanine films,' Sensors and Actuators, vol. 17, no. 3-4, pp. 475-480, 1989. [9] X. Zhang, F. Jin, and J. Xing, 'Electroreduction of nitrite based on Ag/PPy nanowires modified electrodes,' in Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on, 2009, pp. 194-197: IEEE. [10] L. Rana, R. Gupta, M. Tomar, and V. Gupta, 'ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor,' Sensors and Actuators B: Chemical, 2017. [11] K. Henkel, A. Oprea, I. Paloumpa, G. Appel, D. Schmeißer, and P. Kamieth, 'Selective polypyrrole electrodes for quartz microbalances: NO2 and gas flux sensitivities,' Sensors and Actuators B: Chemical, vol. 76, no. 1, pp. 124-129, 2001. [12] G. Sauerbrey, 'Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,' Zeitschrift für Physik A Hadrons and Nuclei, vol. 155, no. 2, pp. 206-222, 1959. [13] L. Slutsky and W. Wade, 'Adsorption of gases on quartz single crystals,' The Journal of Chemical Physics, vol. 36, no. 10, pp. 2688-2692, 1962. [14] Q. Bristow, 'An evaluation of the quartz crystal microbalance as a mercury vapour sensor for soil gases,' Journal of Geochemical Exploration, vol. 1, no. 1, pp. 55-76, 1972. [15] R. Bucur, V. Mecea, and T. Flanagan, 'The kinetics of hydrogen (deuterium) sorption by thin palladium layers studied with a piezoelectric quartz crystal microbalance,' Surface Science, vol. 54, no. 2, pp. 477-488, 1976. [16] J. Martin, 'Aluminum‐related acoustic loss in AT‐cut quartz crystals,' Journal of applied physics, vol. 56, no. 9, pp. 2536-2540, 1984. [17] T. Nakamoto, K. Nakamura, and T. Moriizumi, 'Study of oscillator-circuit behavior for QCM gas sensor,' in Ultrasonics Symposium, 1996. Proceedings., 1996 IEEE, 1996, vol. 1, pp. 351-354: IEEE. [18] S. Navale, G. Khuspe, M. Chougule, and V. Patil, 'Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites,' Ceramics International, vol. 40, no. 6, pp. 8013-8020, 2014. [19] H. Zhang, L. Yu, Q. Li, Y. Du, and S. Ruan, 'Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing,' Sensors and Actuators B: Chemical, vol. 241, pp. 109-115, 2017. [20] L. B. Silva and E. J. Santos, 'Quartz transducer modeling for development of baw resonators,' change, vol. 1, p. 2, 2006. [21] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 'IEEE standard on piezoelectricity,' ed: Society, 1988. [22] H. F. Tiersten, Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. Springer, 2013. [23] W. P. Mason and H. Baerwald, 'Piezoelectric crystals and their applications to ultrasonics,' Physics Today, vol. 4, p. 23, 1951. [24] J. Rosenbaum, Bulk acoustic wave theory and devices. Artech House on Demand, 1988. [25] W. Wang, C. Zhang, Z. Zhang, Y. Liu, and G. Feng, 'Three operation modes of lateral-field-excited piezoelectric devices,' Applied Physics Letters, vol. 93, no. 24, p. 242906, 2008. [26] K. S. Novoselov and A. Geim, 'The rise of graphene,' Nat. Mater, vol. 6, pp. 183-191, 2007. [27] S. Park and R. S. Ruoff, 'Chemical methods for the production of graphenes,' Nature nanotechnology, vol. 4, no. 4, pp. 217-224, 2009. [28] F. Schedin et al., 'Detection of individual gas molecules adsorbed on graphene,' Nature materials, vol. 6, no. 9, pp. 652-655, 2007. [29] D.-T. Phan and G.-S. Chung, 'Effects of Pd nanocube size of Pd nanocube-graphene hybrid on hydrogen sensing properties,' Sensors and Actuators B: Chemical, vol. 204, pp. 437-444, 2014. [30] F. Gu, R. Nie, D. Han, and Z. Wang, 'In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature,' Sensors & Actuators: B. Chemical, no. 219, pp. 94-99, 2015. [31] S. Srivastava et al., 'Faster response of NO2 sensing in graphene–WO3 nanocomposites,' Nanotechnology, vol. 23, no. 20, p. 205501, 2012. [32] Y. Yang et al., 'Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application,' Nanoscale, vol. 6, no. 13, pp. 7369-7378, 2014. [33] S. Liu, Z. Wang, Y. Zhang, J. Li, and T. Zhang, 'Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances,' Sensors and Actuators B: Chemical, vol. 228, pp. 134-143, 2016. [34] M. B. Sassin, A. N. Mansour, K. A. Pettigrew, D. R. Rolison, and J. W. Long, 'Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage,' ACS nano, vol. 4, no. 8, pp. 4505-4514, 2010. [35] S. Gu, Z. Lou, L. Li, Z. Chen, X. Ma, and G. Shen, 'Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications,' Nano Research, vol. 9, no. 2, pp. 424-434, 2016. [36] Z. An, J. Zhang, S. Pan, and F. Yu, 'Facile template-free synthesis and characterization of elliptic α-Fe2O3 superstructures,' The Journal of Physical Chemistry C, vol. 113, no. 19, pp. 8092-8096, 2009. [37] S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, 'Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,' Carbon, vol. 48, no. 15, pp. 4466-4474, 2010. [38] A. l. C. Heredia et al., 'Synthesis, characterization, and catalytic behavior of Mg–Al–Zn–Fe mixed oxides from precursors layered double hydroxide,' Industrial & Engineering Chemistry Research, vol. 50, no. 11, pp. 6695-6703, 2011. [39] A. Campion and P. Kambhampati, 'Surface-enhanced Raman scattering,' Chemical society reviews, vol. 27, no. 4, pp. 241-250, 1998. [40] B. D. Vogt, E. K. Lin, W.-l. Wu, and C. C. White, 'Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films,' The Journal of Physical Chemistry B, vol. 108, no. 34, pp. 12685-12690, 2004. [41] M. Seredych, S. Bashkova, R. Pietrzak, and T. J. Bandosz, 'Interactions of NO2 and NO with carbonaceous adsorbents containing silver nanoparticles,' Langmuir, vol. 26, no. 12, pp. 9457-9464, 2010. [42] http://www.txccorp.com/index.php?action=c_technology_1&cid=1 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68191 | - |
dc.description.abstract | 近年來科技發展日新月異,人們生活品質及身體健康受到重視,許多有毒氣體充斥在生活環境中,其中二氧化氮為常見有害氣體之一,經由石化燃燒及汽機車廢氣排放所形成,抑或是工業製造硝酸時之中間產物,每年約有幾百萬噸二氧化氮排放到大氣中。一般來說,二氧化氮在室溫下呈現紅棕色,且帶有刺鼻的氣味,若不經意情況下吸入,在低濃度情況下,將造成肺部灼傷;高濃度情況下,將大幅提高呼吸道病變之機率。此外二氧化氮導致許多環境汙染,常見汙染種類,如:酸雨、光化學煙霧及部分金屬之氧化。在經濟發展與環境保護之間必須取得平衡點,所以監控二氧化氮排放量及濃度顯得相當重要。石英晶體微天平應用於氣體感測器具良好穩定度、靈敏度及重現性,適合發展成二氧化氮氣體感測器。
本研究使用共振頻率為18.432 MHz之AT cut石英振盪器,並在上表面電極塗佈還原氧化石墨烯結合氧化鐵之感測材料,能直接室溫下量測二氧化氮,無需使用加熱器,利用石英晶體微天平對質量負載效應之敏銳度及線性度,並設計雙埠延遲線能有效降低溫度及濕度等環境擾動;此外,為了提高塗佈感測材料之均勻性,嘗試三種不同塗佈製程並測試頻率訊號之穩定度,根據結果,在使用超聲波噴塗製程下,頻率訊號穩定度最高。二氧化氮量測方面,將量測三次回復曲線,確保感測器有良好的重複性,並量測濃度108、217、347及500 ppm,在濃度0~217 ppm時,靈敏度達1.7306 Hz/ppm;在濃度217~500 ppm時,靈敏度達0.4576 Hz/ppm,證明結合還原氧化石墨烯/氧化鐵之石英晶體微天平適合發展成二氧化氮氣體感測器。 | zh_TW |
dc.description.abstract | In recent years, the development of technology has become better and better. People care about the quality of life and the health of body. Lots of toxic gases are filled with in our environment. Among them nitrogen dioxide is one of the most common harmful gases. Nitrogen dioxide will be exhausted several million tons every year. That situation is caused by burning fossil fuel, exhaling gases by cars, and producing nitric acid. In general, nitrogen dioxide is red-brown color at room temperature and smells pungent. Sometimes, people will breathe in nitrogen dioxide carelessly. If the nitrogen dioxide concentration is low, lung will get burned. If the nitrogen dioxide concentration is high, the possibility of respiratory tract lesion will enhance. Nitrogen dioxide results in many environmental pollution, like acid rain and photochemical smog. Finding a balance between development of economy and protection of environment is essential. Therefore, monitoring nitrogen dioxide emission and concentration is quite important. Quartz crystal microbalance(QCM) is suitable to be gas sensor because QCM applying to gas sensor has great stability, sensitivity, and repeatability.
In this thesis, QCM, operating frequency at 18.432 MHz based on AT cut quartz is coated with rGO/α-Fe2O3 on the surface of electrode. The gas sensor can operate at room temperature without a heater. QCM is sensitive to mass loading and has linearity. Dual channel configuration is employed to eliminate temperature and humidity fluctuations. The stability of frequency signals of three different coating processes is conducted to evaluate the performance of sensor. Every curve of measurements repeats three times to confirm repeatability of gas sensor. According to the measurements, ultrasonic spraying has the best stability. When concentration of nitrogen dioxide is between 0 and 217 ppm, the sensitivity of QCM reaches 1.7306 Hz/ppm. When concentration of nitrogen dioxide is between 217 and 500 ppm, the sensitivity of QCM reaches 0.4576 Hz/ppm. It proves that QCM coated with rGO/α-Fe2O3 is proper to be developed as a gas sensor. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:14:27Z (GMT). No. of bitstreams: 1 ntu-106-R04543078-1.pdf: 3767609 bytes, checksum: ab82e189cfbddf59589e107077853ead (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝...... i
中文摘要............... ii Abstract.................... iii 目錄........................ v 圖目錄...........................vii 表目錄.......................... x 第一章 導論............................... 1 1.1 研究動機............................. 1 1.2 氣體感測器簡介....................... 1 1.3 文獻回顧............................... 3 1.4 章節介紹............................... 5 第二章 石英晶體微天平原理.................... 7 2.1 壓電效應(Piezoelectric effect).......... 7 2.2 AT cut石英壓電材料及材料常數............ 8 2.3 基本壓電方程式........................... 9 2.4 Christoffel方程式與機電耦合常數................. 11 2.5 振動模態介紹及模擬...................... 12 2.6 雙埠延遲線設計(Dual channel configuration)...... 15 第三章 二氧化氮感測器製作與分析................. 30 3.1 rGO/α-Fe2O3 感測膜製作與分析................... 30 3.1.1 rGO/α-Fe2O3 之製作 30 3.1.2 電子能譜儀(X-ray photoelectron spectroscopy, XPS)量測 31 3.1.3 X射線繞射分析儀(X-ray diffractometer, XRD)量測 32 3.1.4 拉曼光譜(Raman spectroscopy)量測 33 3.1.5 場發射電子顯微鏡(Field-emission scanning electron microscope, FE-SEM)量測 34 3.2 石英晶體微天平感測機制................ 35 3.2.1 化學反應機制(Chemical reaction) 35 3.2.2 質量負載效應(Mass loading effect) 36 3.3 感測材料塗佈方式及塗佈厚度分析........ 37 3.3.1 感測層塗佈方式 37 3.3.2 光學式表面分析儀(Optics-type surface analyzer) 38 3.4 塗佈製程對共振訊號穩定度測試......... 39 第四章 二氧化氮感測器實驗量測................. 54 4.1 實驗架構 ........................54 4.1.1 氣體量測系統 54 4.1.2 資料擷取系統 56 4.2 環境因子對感測器共振頻率之影響......... 57 4.2.1 濕度變化對共振頻率之影響 57 4.2.2 溫度變化對共振頻率之影響 58 4.3 二氧化氮氣體量測........................ 59 4.3.1 重複性(Repeatability) 59 4.3.2 靈敏度(Sensitivity) 60 第五章 結論與未來展望...................... 76 5.1 結論................................... 76 5.2 未來展望............................ 77 參考文獻....................................... 79 | |
dc.language.iso | zh-TW | |
dc.title | 以rGO/α-Fe2O3發展室溫下之石英晶體微天平式二氧化氮感測器 | zh_TW |
dc.title | Development of a nitrogen dioxide sensor operating at room temperature using QCM coated with rGO/α-Fe2O3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳永裕,孫嘉宏,陳蓉珊,鮑世勇 | |
dc.subject.keyword | 石英晶體微天平,二氧化氮感測器,還原氧化石墨烯/氧化鐵,雙延遲線,超聲波噴塗, | zh_TW |
dc.subject.keyword | QCM,Nitrogen dioxide sensor,rGO/α-Fe2O3,Dual channel configuration,Ultrasonic spraying, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201704367 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-11-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。