請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68190
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳政忠 | |
dc.contributor.author | Yi Chen | en |
dc.contributor.author | 陳毅 | zh_TW |
dc.date.accessioned | 2021-06-17T02:14:25Z | - |
dc.date.available | 2020-01-04 | |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-11-13 | |
dc.identifier.citation | [1] Y.-C. Shu and I. Lien, 'Efficiency of energy conversion for a piezoelectric power harvesting system,' Journal of micromechanics and microengineering, vol. 16, no. 11, p. 2429, 2006.
[2] R. Elfrink et al., 'Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system,' Journal of Micromechanics and Microengineering, vol. 20, no. 10, p. 104001, 2010. [3] L. Gu and C. Livermore, 'Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation,' Smart Materials and Structures, vol. 20, no. 4, p. 045004, 2011. [4] Q. Yu et al., '3D, wideband vibro-impacting-based piezoelectric energy harvester,' AIP Advances, vol. 5, no. 4, p. 047144, 2015. [5] S. Oh, H. Han, S. Han, J. Lee, and W. Chun, 'Development of a tree‐shaped wind power system using piezoelectric materials,' International Journal of Energy Research, vol. 34, no. 5, pp. 431-437, 2010. [6] S. Priya, 'Modeling of electric energy harvesting using piezoelectric windmill,' Applied Physics Letters, vol. 87, no. 18, p. 184101, 2005. [7] Y. Yang, Q. Shen, J. Jin, Y. Wang, W. Qian, and D. Yuan, 'Rotational piezoelectric wind energy harvesting using impact-induced resonance,' Applied Physics Letters, vol. 105, no. 5, p. 053901, 2014. [8] Y. Pennec, B. Djafari-Rouhani, J. Vasseur, A. Khelif, and P. A. Deymier, 'Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,' Physical Review E, vol. 69, no. 4, p. 046608, 2004. [9] T.-T. Wu and J.-H. Sun, '4G-3 Guided Surface Acoustic Waves in Phononic Crystal Waveguides,' in Ultrasonics Symposium, 2006. IEEE, 2006, pp. 673-676: IEEE. [10] J. Vasseur et al., 'Waveguiding in two-dimensional piezoelectric phononic crystal plates,' Journal of applied physics, vol. 101, no. 11, p. 114904, 2007. [11] S. Peng et al., 'Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals,' Applied Physics Letters, vol. 96, no. 26, p. 263502, 2010. [12] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, 'Acoustic band structure of periodic elastic composites,' Physical review letters, vol. 71, no. 13, p. 2022, 1993. [13] T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, 'Evidence of complete band gap and resonances in a plate with periodic stubbed surface,' Applied Physics Letters, vol. 93, no. 11, p. 111902, 2008. [14] O. R. Bilal and M. I. Hussein, 'Trampoline metamaterial: Local resonance enhancement by springboards,' Applied Physics Letters, vol. 103, no. 11, p. 111901, 2013. [15] I. Psarobas, N. Stefanou, and A. Modinos, 'Phononic crystals with planar defects,' Physical Review B, vol. 62, no. 9, p. 5536, 2000. [16] J.-H. Sun and T.-T. Wu, 'Analyses of mode coupling in joined parallel phononic crystal waveguides,' Physical Review B, vol. 71, no. 17, p. 174303, 2005. [17] Z.-j. Yao, G.-l. Yu, Y.-s. Wang, Z.-f. Shi, and J.-b. Li, 'Propagation of flexural waves in phononic crystal thin plates with linear defects,' Journal of Zhejiang University-SCIENCE A, vol. 11, no. 10, pp. 827-834, 2010. [18] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, 'Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,' physical Review B, vol. 68, no. 21, p. 214301, 2003. [19] A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. Djafari-Rouhani, 'Guided elastic waves along a rod defect of a two-dimensional phononic crystal,' Physical Review E, vol. 69, no. 6, p. 067601, 2004. [20] F.-C. Hsu, C.-I. Lee, J.-C. Hsu, T.-C. Huang, C.-H. Wang, and P. Chang, 'Acoustic band gaps in phononic crystal strip waveguides,' Applied Physics Letters, vol. 96, no. 5, p. 051902, 2010. [21] F.-C. Hsu, J.-C. Hsu, T.-C. Huang, C.-H. Wang, and P. Chang, 'Design of lossless anchors for microacoustic-wave resonators utilizing phononic crystal strips,' Applied Physics Letters, vol. 98, no. 14, p. 143505, 2011. [22] F.-C. Hsu, J.-C. Hsu, T.-C. Huang, C.-H. Wang, and P. Chang, 'Reducing support loss in micromechanical ring resonators using phononic band-gap structures,' Journal of Physics D: Applied Physics, vol. 44, no. 37, p. 375101, 2011. [23] Y. Pennec et al., 'Band gaps and cavity modes in dual phononic and photonic strip waveguides,' AIP advances, vol. 1, no. 4, p. 041901, 2011. [24] Y. Yao, F. Wu, X. Zhang, and Z. Hou, 'Lamb wave band gaps in locally resonant phononic crystal strip waveguides,' Physics Letters A, vol. 376, no. 4, pp. 579-583, 2012. [25] C. Li, D. Huang, J. Guo, and J. Nie, 'Engineering of band gap and cavity mode in phononic crystal strip waveguides,' Physics Letters A, vol. 377, no. 38, pp. 2633-2637, 2013. [26] D. Feng, D. Xu, G. Wu, B. Xiong, and Y. Wang, 'Extending of band gaps in silicon based one-dimensional phononic crystal strips,' Applied Physics Letters, vol. 103, no. 15, p. 151906, 2013. [27] H. Khales, A. Hassein-Bey, and A. Khelif, 'Evidence of ultrasonic band gap in aluminum phononic crystal beam,' Journal of Vibration and Acoustics, vol. 135, no. 4, p. 041007, 2013. [28] E. Coffy, T. Lavergne, M. Addouche, S. Euphrasie, P. Vairac, and A. Khelif, 'Ultra-wide acoustic band gaps in pillar-based phononic crystal strips,' Journal of Applied Physics, vol. 118, no. 21, p. 214902, 2015. [29] E. Coffy, S. Euphrasie, M. Addouche, P. Vairac, and A. Khelif, 'Evidence of a broadband gap in a phononic crystal strip,' Ultrasonics, vol. 78, pp. 51-56, 2017. [30] C. Ma, J. Guo, and Y. Liu, 'Extending and lowing band gaps in one-dimensional phononic crystal strip with pillars and holes,' Journal of Physics and Chemistry of Solids, vol. 87, pp. 95-103, 2015. [31] L.-Y. Wu, L.-W. Chen, and C.-M. Liu, 'Acoustic energy harvesting using resonant cavity of a sonic crystal,' Applied Physics Letters, vol. 95, no. 1, p. 013506, 2009. [32] L.-Y. Wu, L.-W. Chen, and C.-M. Liu, 'Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal,' Physica B: Condensed Matter, vol. 404, no. 12, pp. 1766-1770, 2009. [33] A. Yang et al., 'Enhanced acoustic energy harvesting using coupled resonance structure of sonic crystal and helmholtz resonator,' Applied Physics Express, vol. 6, no. 12, p. 127101, 2013. [34] H. Lv, X. Tian, M. Y. Wang, and D. Li, 'Vibration energy harvesting using a phononic crystal with point defect states,' Applied Physics Letters, vol. 102, no. 3, p. 034103, 2013. [35] S. Qi, M. Oudich, Y. Li, and B. Assouar, 'Acoustic energy harvesting based on a planar acoustic metamaterial,' Applied Physics Letters, vol. 108, no. 26, p. 263501, 2016. [36] S.-C. Liu, 'Piezo Energy Harvester Based on the Resonant Cavity of Stubbed Phononic Crystal Plate,' Master Thesis, Institute of Applied Mechanics, National Taiwan University, 2017. [37] R. Myers, M. Vickers, H. Kim, and S. Priya, 'Small scale windmill,' Applied Physics Letters, vol. 90, no. 5, p. 054106, 2007. [38] S. Li and H. Lipson, 'Vertical-stalk flapping-leaf generator for wind energy harvesting,' in Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2009, pp. 21-23. [39] S. Li, J. Yuan, and H. Lipson, 'Ambient wind energy harvesting using cross-flow fluttering,' ed: AIP, 2011. [40] D. Jun Li et al., 'Polymer piezoelectric energy harvesters for low wind speed,' Applied Physics Letters, vol. 104, no. 1, p. 012902, 2014. [41] Linear Technology Corporation, 'Nanopower Energy Harvesting Power Supply,' no. LTC-3588-1 datasheet. [42] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 'IEEE standard on piezoelectricity,' ed: Society, 1988. [43] Q. Chen and Q.-M. Wang, 'The effective electromechanical coupling coefficient of piezoelectric thin-film resonators,' Applied Physics Letters, vol. 86, no. 2, p. 022904, 2005. [44] Y. Shu and I. Lien, 'Analysis of power output for piezoelectric energy harvesting systems,' Smart materials and structures, vol. 15, no. 6, p. 1499, 2006. [45] V. L. Popov, Contact mechanics and friction. Springer, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68190 | - |
dc.description.abstract | 聲子晶體(Phononic crystals)是由一種或多種材料週期性排列的結構,其具有頻溝(band gap)的特性,可阻擋某頻段之彈性波傳遞。依據產生頻溝機制的不同可分為布拉格散射和局部共振型式,其中局部共振型式主要取決於共振子的結構與頻率,因此可實現以較小尺寸阻擋較大的波長。在完美週期的聲子晶體中,將其中一單胞移除會引致局部共振模態,本論文即利用此方法設計出聲子晶體共振腔。利用聲子晶體頻溝的特性使彈性波能量得以聚集,再透過壓電效應將振動能轉換為電能。並設計低頻風能轉換敲擊力的機制,以此激發出高頻聲波。
本論文使用有限元素法軟體(COMSOL)來模擬板波在聲子晶體樑結構中之行為,並透過幾何尺寸分析設計出具有低頻頻溝(7-11.5 kHz)之聲子晶體共振腔,在9.04 kHz有一共振模態。另外,模擬結果顯示當聲子晶體層數達到四層以上時有較佳的共振振幅。在壓電聲晶體的模擬中,可以發現壓電層厚度與共振腔底板比例為0.3、壓電層長度為8 mm時會有較佳的輸出電壓,故以此做為最終設計。 實驗的量測結果顯示,本研究之聲子晶體結構在5.9 kHz至9 kHz聲波會有較大的衰減,證明其阻擋波傳的能力。同時也對敲擊源的激發能量頻率進行量測與分析,以設計出最佳的敲擊源。在聲子晶體共振腔量測的部分,以螺絲配合AT-3黏膠製成的共振腔其共振頻率為8.28 kHz,加入壓電層後的共振頻率為7.25 kHz,平均功率為0.77 mW,最佳阻抗為8.27 kΩ。與無頻溝之對照組平板相比功率可達到7倍之多,證明聲子晶體對於能量擷取的效益。 最後配合電源管理模組與風力敲擊裝置進行實驗,將四個共振腔同時於風速 4 m/s下運作,平均每1.06秒可使設計電路中的電容充滿至標準電壓,並放電至後端負載,實踐壓電能量擷取裝置之研究。 | zh_TW |
dc.description.abstract | Phononic crystals (PC) are composed of one or more materials which distributed periodically. One of the main properties of the phononic crystals is band gap which prevents the wave of a specific frequency range propagating. The band gap based on local resonant could get lower frequency band structures. A resonant cavity is formed by removing a unit from perfect PCs. And the energy of elastic wave at the resonant frequency can be trapped in the cavity. In this study, the piezo energy harvester is based on converting the acoustic energy into electric energy by putting a piezoelectric ceramics film. Besides, we design a mechanism to transforming low-frequency wind energy into impact, so we can get the high-frequency acoustic waves as source.
In this study, we numerically calculate the dispersion of lamb wave in phononic crystals strip by finite element method (FEM). The PC resonator with a band gap at 7-11 kHz and resonant frequency at 9.04 kHz was formed. Moreover, the simulated results show that more than 4 rows of PC grating can get larger resonant amplitude. And the maximum voltage output occurs at the ratio of thickness of piezoelectric ceramics film and PC plate in 0.3. The length of piezoelectric ceramics film is 8mm. In the experiment, the acoustic wave attenuated at 5.9-9 kHz in a PC strip. And we design impact source by analyzing different materials contact with thin plate. The piezo energy harvester with resonant frequency at 7.25 kHz could get a maximum power 0.77 mW under a load resistance 3.9 kΩ. Compared with the control group, the output power is 7 times lager. It shows that PC is helpful to trapping energy. Finally, we connect the output voltage to power-management circuit to observe capacitance discharging. When four PC resonators work at the same time, the average time of capacitance discharging is 1.06 seconds with the wind velocity of 4 m/s. It validates that the piezoelectric energy harvester could generate electric power from wind energy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:14:25Z (GMT). No. of bitstreams: 1 ntu-106-R04543054-1.pdf: 4133204 bytes, checksum: 79330906183355444626a0d48a51ab8b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 V 表目錄 VII 圖目錄 VIII 符號對照表 XII 第一章 研究介紹 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 章節介紹 4 第二章 聲子晶體樑共振腔設計 7 2.1 聲子晶體波傳理論 7 2.2 聲子晶體結構設計 10 2.2.1 板波於聲子晶體樑之頻散與振動模態 10 2.2.2 幾何尺寸設計 11 2.2.3 穿射率分析 13 2.3 聲子晶體樑共振腔設計 14 2.3.1 共振模態設計 14 2.3.2 聲子晶體層數分析 15 第三章 壓電能量擷取裝置之設計 29 3.1 壓電效應 29 3.2 壓電材料之特性與相關參數 30 3.2.1 壓電材料組成律 30 3.2.2 壓電材料極化處理 31 3.2.3 壓電操作模式 32 3.2.4 機電耦合係數( Electro-Mechanical Coupling Factor ) 32 3.2.5 機械品質因子( Mechanical Quality Factor ) 33 3.3 壓電聲子晶體樑共振腔功率分析 33 3.3.1 壓電材料選用 34 3.3.2 壓電陶瓷片尺寸設計 34 3.4 等效電路模型與電源管理模組 37 3.4.1 等效電路模型 37 3.4.2 電源管理電路設計 38 3.5 風能擷取機構 39 3.5.1 低頻能量轉換高頻機制 39 3.5.2 壓電能量擷取裝置機構設計 41 第四章 聲子晶體樑共振腔之壓電能量擷取 54 4.1 聲子晶體頻溝量測 54 4.2 敲擊源訊號分析 55 4.3 壓電聲子晶體樑共振腔之特性量測 57 4.3.1 不同製作方式之共振腔比較 57 4.3.2 壓電共振腔訊號量測 58 4.3.3 聲子晶體層數對共振腔之影響 58 4.4 輸出功率量測 59 4.4.1 外接電阻與輸出功率之量測 59 4.4.2 聲子晶體對輸出電壓與功率之影響 60 4.4.3 不同敲擊源之輸出功率比較 61 4.5 壓電能量擷取電路實驗 62 第五章 結果討論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 結合聲子晶體樑共振腔之壓電能量擷取裝置研製 | zh_TW |
dc.title | Piezo Energy Harvester Using Resonant Cavity in Phononic Crystal Strip | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳永裕,孫嘉宏,陳蓉珊,鮑世勇 | |
dc.subject.keyword | 聲子晶體樑,聲子晶體共振腔,壓電能量擷取,蘭姆波,風力敲擊裝置, | zh_TW |
dc.subject.keyword | Phononic crystal strip,Phononic crystal resonator,Piezo energy harvesting,Lamb wave,Wind-induced impact, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU201704366 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-11-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。