請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68172完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫(Yan-Fu Kuo) | |
| dc.contributor.author | Tsan-Yu Wu | en |
| dc.contributor.author | 吳璨妤 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:14:00Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Anwar, S., Hwang, K., Sung, W. (2017). Structured pruning of deep convolutional neural networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3), 1-18. Backes, A. R., Casanova, D., Bruno, O. M. (2009). Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence, 23(06), 1145-1160. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). De Boer, P. T., Kroese, D. P., Mannor, S., Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134(1), 19-67. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302. Fukushima, K., Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-285). Springer, Berlin, Heidelberg. Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri botanical garden, 1-34. Ghazi, M. M., Yanikoglu, B., Aptoula, E. (2017). Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing, 235, 228-235. Han, S., Pool, J., Tran, J., Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances in neural information processing systems (pp. 1135-1143). Hsieh, C. F., Lai, I. L., Song, G. Z., Liao, C. C., Yang, K. C. (1997). Biodiversity and conservation of the evergreen broad-leaved forests in Taiwan. Tropics, 6(4), 361-370. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). Hwang, J. K., Choi, E. M., Lee, J. H. (2005). Antioxidant activity of Litsea cubeba. Fitoterapia, 76(7-8), 684-686. Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W. P., ... Müller, H. (2015, September). LifeCLEF 2015: multimedia life species identification challenges. In International Conference of the Cross-Language Evaluation Forum for European Languages (pp. 462-483). Springer, Cham. Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Kondo, K., Shiba, M., Yamaji, H., Morota, T., Zhengmin, C., Huixia, P., Shoyama, Y. (2007). Species identification of licorice using nrDNA and cpDNA genetic markers. Biological and Pharmaceutical Bulletin, 30(8), 1497-1502. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). Kvacek, Z. (2010). Forest flora and vegetation of the European early Palaeogene–a review. Bull. Geosci, 85(1), 3-16. LeCun, Y. A., Bottou, L., Orr, G. B., Müller, K. R. (2012). Efficient backprop. In Neural networks: Tricks of the trade (pp. 9-48). Springer, Berlin, Heidelberg. Lee, C. H., Hsu, H. C., Yang, C. K., Tsai, M. J., Kuo, Y. F. (2019). Identifying Fagaceae species in Taiwan using leaf images. Transactions of the ASABE, 62(5), 1055-1063. Lee, S. H., Chan, C. S., Wilkin, P., Remagnino, P. (2015, September). Deep-plant: Plant identification with convolutional neural networks. In 2015 IEEE international conference on image processing (ICIP) (pp. 452-456). IEEE. Pang, X., Song, J., Zhu, Y., Xu, H., Huang, L., Chen, S. (2011). Applying plant DNA barcodes for Rosaceae species identification. Cladistics, 27(2), 165-170. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., ... Lerer, A. (2017). Automatic differentiation in pytorch. REN, B. Q., XIANG, X. G., CHEN, Z. D. (2010). Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Molecular Ecology Resources, 10(4), 594-605. Robbins, H., Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407. Ronneberger, O., Fischer, P., Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520). Schroeder, C. A. (1976). Some useful plants of the botanical family Lauraceae. Calif. Avocado Soc. Yrbk, 59, 30-34. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626). Simonyan, K., Vedaldi, A., Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034. Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Singh, K., Gupta, I., Gupta, S. (2010). Svm-bdt pnn and fourier moment technique for classification of leaf shape. International journal of signal processing, Image Processing and Pattern Recognition, 3(4), 67-78. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). Tang, C. Q. (2015). The subtropical vegetation of southwestern China: plant distribution, diversity and ecology (Vol. 11). Springer. Yang, H. W., Hsu, H. C., Yang, C. K., Tsai, M. J., Kuo, Y. F. (2019). Differentiating between morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional neural networks. Computers and Electronics in Agriculture, 162, 739-748. Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8697-8710). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68172 | - |
| dc.description.abstract | 森林是陸域生態系重要的一環,不但孕育豐富的動植物,更能提供木材、調節氣候,對人類社會與環境帶來諸多效益。為了更有效率應用及管理這些資源,準確的物種辨識是不可或缺的步驟。殼斗科與樟科是台灣中低海拔的優勢樹種,因為台灣豐富的地形與氣候變化分化出許多台灣特有種。現今的植物物種辨識依靠比對遺傳標記的相似性,然而該方法昂貴並耗時。近年來卷積神經網路 (convolutional neural networks, CNNs) 廣泛被應用於各種複雜的機器視覺任務。因此本研究利用深度卷積神經網路自動辨識35種殼斗科與樟科物種,其中葉片影像由彩色平板掃描機所取得。本研究之自動辨識模型使用三種不同的深度卷積神經網路架構,包含:DenseNet-121、MobileNet V2與Xception。研究中卷積神經網路模型之準確率最高可達99.396%,而在圖像顯示卡 (Graphics Processing Unit, GPU) 最快之辨識速度可達17.1毫秒∕影像。 | zh_TW |
| dc.description.abstract | Forests contain abundant resources and provide benefits to human societies, such as edible fruits, medicinal substances, and woods for construction. Species identification is an essential step for the management and utilization of the resources. Nowadays, the species identification relies on the examining the similarity of genetic markers. The approach is, however, time consuming, laborious, and costly. Fagaceae and Lauraceae are two woody plant families with high species richness that dominate the low and middle altitude regions in Taiwan. This paper proposed a machine vision approach for identifying the species of families Fagaceae and Lauraceae using leaf images. Leaf specimens of 35 Fagaceae and Lauraceae species were collected. The images of the leaves were acquired using flatbed scanners. Deep convolutional neural networks (DCNN) of three architectures, namely DenseNet-121, MobileNet V2, and Xception, were next trained to identify the species. Among all, Xception reached the highest mean accuracy of 99.396%, and MobileNetV2 required the least mean test time of 17.1 ms per image using an GPU. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:14:00Z (GMT). No. of bitstreams: 1 U0001-1708202015491400.pdf: 1961644 bytes, checksum: 682d1493492aa21876830b16302f3719 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i 摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 1.3 Organization 3 CHAPTER 2. LITERATURE REVIEW 4 2.1 Conventional Molecular-marker-based approaches 4 2.2 Image-based and machine learning approaches 4 2.3 CNN-based approaches for plant species identification 5 CHAPTER 3. MATERIALS AND METHODS 6 3.1 Leaf sample collection and image acquisition 6 3.2 Leaf segmentation 7 3.3 Image augmentation and normalization 8 3.4 CNN models and training details 9 3.5 Visualization of the CNN models 10 3.6 Pruning of the CNN models 10 CHAPTER 4. RESULTS AND DISSCUSSION 12 4.1 The performance of leaf segmentation model 12 4.2 The convergence of the species identification models 12 4.3 The performance of the trained models 13 4.4 Saliency maps and Grad-CAMs of the trained models 17 4.5 Pruning of the trained models and parameter redundancy 21 CHAPTER 5. CONCLUSIONS 23 REFERENCES 24 | |
| dc.language.iso | en | |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 植物物種辨識 | zh_TW |
| dc.subject | 樟科 | zh_TW |
| dc.subject | 殼斗科 | zh_TW |
| dc.subject | Deep learning | en |
| dc.subject | Convolutional neural network | en |
| dc.subject | Lauraceae | en |
| dc.subject | Plant identification | en |
| dc.subject | Fagaceae | en |
| dc.title | 利用葉片影像與卷積神經網路辨識殼斗科與樟科之物種 | zh_TW |
| dc.title | Identifying Fagaceae and Lauraceae species using leaf images and convolutional neural networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 花凱龍(Kai-Lung Hua),鄭文皇(Wen-Huang Cheng),楊智凱(Chih-Kai Yang) | |
| dc.subject.keyword | 卷積神經網路,深度學習,殼斗科,樟科,植物物種辨識, | zh_TW |
| dc.subject.keyword | Convolutional neural network,Deep learning,Fagaceae,Lauraceae,Plant identification, | en |
| dc.relation.page | 28 | |
| dc.identifier.doi | 10.6342/NTU202003782 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202015491400.pdf 未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
