Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉家瑄(Char-Shine Liu)
dc.contributor.authorWei-Chung Hanen
dc.contributor.author韓為中zh_TW
dc.date.accessioned2021-06-17T02:13:34Z-
dc.date.available2021-01-01
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-11-29
dc.identifier.citation中文文獻
李佳芳,2012,應用震測屬性探討台灣西南海域永安海脊地區天然氣水合物之分布與特性。臺灣大學海洋研究所碩士論文,共72頁。
邱瑞焜,2009,以海床迴聲特徵探討台灣海峽及台灣西南海域之淺層沈積作用。臺灣大學海洋研究所博士論文,共136頁。
倪錦江,2012,南海北部大陸邊緣斜坡海脊含天然氣水合物地層的構造與沉積特徵。 臺灣大學海洋研究所碩士論文,共80頁。
許樹坤,2014,天然氣水合物資源潛能調查:高解析聲納調查(4/3)。經濟部中央地質調查所報告,第103-17號,共226頁。
許樹坤,2015,天然氣水合物資源潛能調查:高解析聲納調查(4/4)。經濟部中央地質調查所報告,第104-12號,共230頁。
黃一剛,2008,台灣西南海域非活動型大陸邊緣海底塊體運動之探討。臺灣大學海洋研究所碩士論文,共59頁。
湯守立,翁榮南,徐永耀,楊昭南,1999,臺灣西南海域台南盆地的演化初論。臺灣石油地質,第33期,第125-149頁。
塗書琳,2010,利用疊前深度移位處理技術探討台灣西南海域天然氣水合物之分布特性與飽和度。臺灣大學海洋研究所碩士論文,共80頁。
趙國涵,2016,多頻道震測訊號接收浮纜之定位及海流對浮纜漂移影響之探討。臺灣大學海洋研究所碩士論文,共47頁。
劉家瑄,2015,天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(4/4)。反射震測與海床聲納回聲剖面調查研究。經濟部中央地質調查所報告,第104-11-A號,共82頁。
英文文獻
Adam, J., Klaeschen, D., Kukowski, N., Flueh, E., 2004. Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23.
Antobreh, A.A., Krastel, S., 2006. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved-off a major arid climatic region. Marine and petroleum geology 23, 37–59.
Barnes, A.E., 2001. Seismic attributes in your facies. CSEG Recorder 26, 41–47.
Berndt, C., Bünz, S., Mienert, J., 2003. Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow. Geological Society, London, Special Publications 216, 283–290.
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V.J., Dumke, I., Dünnbier, K., Ferré, B., others, 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science 343, 284–287.
Biq, C., 1972. Dual-trench structure in the Taiwan-Luzon region, in: Proc. Geol. Soc. China. pp. 65–75.
Boswell, R., Shipp, C., Reichel, T., Shelander, D., Saeki, T., Frye, M., Shedd, W., Collett, T.S., McConnell, D.R., 2015. Prospecting for marine gas hydrate resources. Interpretation.
Bünz, S., Mienert, J., Berndt, C., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letters 209, 291–307.
Byrne, T.B., Liu, C.S., 2002. Geology and geophysics of an arc-continent collision, Taiwan. Geological society of America.
Chen, L., Chi, W.C., Liu, C.S., Shyu, C.T., Wang, Y., Lu, C.Y., 2012. Deriving regional vertical fluid migration rates offshore southwestern Taiwan using bottom-simulating reflectors. Marine Geophysical Research 33, 379–388.
Chen, S.C., Hsu, S.K., Tsai, C.H., Ku, C.Y., Yeh, Y.C., Wang, Y., 2010. Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches 31, 133–147.
Chi, W., Reed, D.L., Tsai, C., 2006. Gas hydrate stability zone in offshore southern Taiwan. Terrestrial Atmospheric and Oceanic Sciences 17, 829.
Chi, W.C., Reed, D.L., Liu, C.S., Lundberg, N., 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestrial, Atmospheric and Oceanic Sciences 9, 779–794.
Chiang, C.S., Yu, H.S., Chou, Y.W., 2004. Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Research 16, 65–78.
Chopra, S., Marfurt, K.J., 2007. Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.
Chopra, S., Marfurt, K.J., 2005. Seismic attributes—A historical perspective. Geophysics 70, 3SO–28SO.
Chou, Y.W., 1999. Tectonic framework, flexural uplift history and structural patterns of flexural extension in Western Taiwan Foreland Basin. National Taiwan University Ph. D. thesis, 125 p. (in Chinese).
Chow, J., Lee, J.S., Sun, R., Liu, C.S., Lundberg, N., 2000. Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Marine Letters 20, 3–9.
Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.S., Chen, J.C., Wang, Y., Chung, S.H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation: Methane flux offshore SW Taiwan. Geofluids 10, 497–510.
Chunang, C.Y., Yu, H.S., 2002. Morphology and canyon forming processes of upper reach of the Penghu submarine canyon off southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 13, 91–108.
Cochrane, G.R., Moore, J.C., MacKay, M.E., Moore, G.F., 1994. Velocity and inferred porosity model of the Oregon accretionary prism from multichannel seismic reflection data: Implications on sediment dewatering and overpressure. Journal of Geophysical Research: Solid Earth 99, 7033–7043.
Collett, T.S., 2012. Gas Hydrate Petroleum System Analysis, in: AGU Fall Meeting Abstracts.
Covey, M., 1986. The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basin. Foreland basins 77–90.
Deptuck, M.E., Sylvester, Z., Pirmez, C., O’Byrne, C., 2007. Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology 24, 406–433.
Feng, D., Chen, D., 2015. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II: Topical Studies in Oceanography 122, 74–83.
Fuh, S.C., Liang, S.C., Wu, M.S., 2003. Spatial and temporal evolution of the Plio-Pleistocene submarine canyons between Potzu and Tainan, Taiwan. Petroleum Geology of Taiwan 36, 1–18.
Fuh, S.C., Liu, C.S., Wu, M.S., 1997. Migration of canyon systems from Pliocene to Pleistocene in area between Hsyning structure and Kaoping Slope and its application for hydrocarbon exploration. Petroleum Geology of Taiwan 31, 43–60.
Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D., Sermondadaz, G., 2006. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene–Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology 226, 25–40.
Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., Zhang, J., 2011. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology 28, 1690–1702.
Han, W.C., Liu, C.S., Chi, W.C., Chen, L., Lin, C.C., Chen, S.C., 2017. Westward advance of the deformation front and evolution of submarine canyons offshore of southwestern Taiwan. Journal of Asian Earth Sciences, 149, 6–19.
Han, W.C., Liu, C.S., Lin, C.C., Wang, Y., 2014. Seismic Investigation of the Pointer Ridge offshore southwestern Taiwan: Detection of fluid migration pathways and fault seal analysis, in: AGU Fall Meeting Abstracts.
Hornbach, M.J., Saffer, D.M., Holbrook, W.S., Van Avendonk, H.J., Gorman, A.R., 2008. Three-dimensional seismic imaging of the Blake Ridge methane hydrate province: Evidence for large, concentrated zones of gas hydrate and morphologically driven advection. Journal of Geophysical Research: Solid Earth 113.
Hsu, H.H., Liu, C.S., Chang, Y.T., Chang, J.H., Ko, C.C., Chiu, S.D., Chen, S.C., 2017. Diapiric activities and intraslope basin development offshore of SW Taiwan: A case study of the Lower Fangliao Basin gas hydrate prospect. Journal of Asian Earth Sciences, 149, 145–159.
Hsu, S.K., Wang, S.Y., Liao, Y.C., Yang, T.F., Jan, S., Lin, J.Y., Chen, S.C., 2013. Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters 369, 98–107.
Huang, C.Y., Wu, W.Y., Chang, C.P., Tsao, S., Yuan, P.B., Lin, C.W., Xia, K.Y., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281, 31–51.
Huang, C.Y., Yuan, P.B., Lin, C.W., Wang, T.K., Chang, C.P., 2000. Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics 325, 1–21.
Huang, C.Y., Yuan, P.B., Tsao, S.J., 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin 118, 274–288.
Johnson, A.H., Max, M.D., 2006. The path to commercial hydrate gas production. The Leading Edge 25, 648–651.
Karig, D.E., Lundberg, N., 1990. Deformation bands from the toe of the Nankai accretionary prism. Journal of Geophysical Research: Solid Earth 95, 9099–9109.
Klaucke, I., Berndt, C., Crutchley, G., Chi, W.C., Lin, S., Muff, S., 2016. Fluid venting and seepage at accretionary ridges: the Four Way Closure Ridge offshore SW Taiwan. Geo-Marine Letters 36, 165–174.
Ku, C.Y., Hsu, S.K., 2009. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics 466, 229–240.
Kuhlmann, G., Adams, S., Campher, C., van der Spuy, D., di Primio, R., Horsfield, B., 2010. Passive margin evolution and its controls on natural gas leakage in the southern Orange Basin, blocks 3/4, offshore South Africa. Marine and Petroleum Geology 27, 973–992.
Kvenvolden, K.A., 1998. A primer on the geological occurrence of gas hydrate. Geological Society, London, Special Publications 137, 9–30.
Lacombe, O., Angelier, J., Chen, H.W., Deffontaines, B., Chu, H.T., Rocher, M., 1997. Syndepositional tectonics and extension-compression relationships at the front of the Taiwan collision belt: a case study in the Pleistocene reefal limestones near Kaohsiung, SW Taiwan. Tectonophysics 274, 83–96.
Lacombe, O., Mouthereau, F., Angelier, J., Deffontaines, B., 2001. Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics 333, 323–345.
Lee, T.Y., Hsu, Y.Y., Tang, C.H., 1995. Structural geometry of the deformation front between 22 N and 23 N and migration of the Penghu Canyon, offshore southwestern Taiwan arc-continent collision zone, in: International Conference and 3rd Sino-French Symposium on Active Collision in Taiwan. pp. 219–227.
Leggett, J., Aoki, Y., Toba, T., 1985. Transition from frontal accretion to underplating in a part of the Nankai Trough accretionary complex off Shikoku (SW Japan) and extensional features on the lower trench slope. Marine and petroleum geology 2, 131–141.
Lester, R., Lavier, L.L., McIntosh, K., Van Avendonk, H.J., Wu, F., 2012. Active extension in Taiwan’s precollision zone: A new model of plate bending in continental crust. Geology 40, 831–834.
Li, L., Lei, X., Zhang, X., Sha, Z., 2013. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea. Marine and Petroleum Geology 39, 92–101.
Liao, W.Z., Lin, A.T., Liu, C.S., Oung, J.N., Wang, Y., 2016. A study on tectonic and sedimentary development in the rifted northern continental margin of the South China Sea near Taiwan. Interpretation 4, SP47–SP65.
Liao, W.Z., Lin, A.T., Liu, C.S., Oung, J.N., Wang, Y., 2014. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications. Journal of Asian Earth Sciences 92, 233–244.
Ligtenberg, H.J., de Bruin, G., Hemstra, N., Geel, C., 2006. Sequence stratigraphic interpretation in the Wheeler transformed (flattened) seismic domain, in: 68th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2006.
Ligtenberg, J.H., 2005. Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Research 17, 141–153.
Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J., Wu, M.S., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Marine Geology 255, 186–203.
Lin, A.T., Watts, A.B., Hesselbo, S.P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research 15, 453–478.
Lin, C.C., Lin, A.T.S., Liu, C.S., Chen, G.Y., Liao, W.Z., Schnurle, P., 2009. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Marine and Petroleum Geology 26, 1118–1131.
Lin, C.C., Lin, A.T.S., Liu, C.S., Horng, C.S., Chen, G.Y., Wang, Y., 2014. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research 35, 21–35.
Liu, C.S., Deffontaines, B., Lu, C.Y., Lallemand, S., 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Marine Geophysical Research 25, 123–137.
Liu, C.S., Huang, I.L., Teng, L.S., 1997. Structural features off southwestern Taiwan. Marine Geology 137, 305–319.
Liu, C.S., Lin, L.F., Han, W.C., Hsu, H.H., Chen, T.T., Shen, J.Y., Liao, W.Z., Hsieh, H.H., Chen, S.C., 2017. Seismic characteristics of fluid-related features in various gas hydrate systems offshore Taiwan, in: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2017).
Liu, C.S., Liu, S.Y., Lallemand, S.E., Lundberg, N., Reed, D.L., 1998. Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences 9, 705–738.
Liu, C.S., Morita, S., Liao, Y.H., Ku, C.Y., Machiyama, H., Lin, S., Soh, W., 2008. High-resolution seismic images of the Formosa Ridge off Southwestern Taiwan where “hydrothermal” chemosynthetic community is present at a cold seep site, in: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
Liu, C.S., Wang, Y.S., Chung, S.H., Chen, S.C., Hsiuan, T.H., others, 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences.
Lu, S., McMechan, G.A., 2004. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics 69, 164–179.
Lundberg, N., Reed, D.L., Liu, C.S., Jr Lieske, L., 1992. Structural Controls on Orogenic Sedimentation Submarine Taiwan Collision. Acta Gelological Taiwanica 131–140.
Max, M.D., Johnson, A.H., 2014. Hydrate petroleum system approach to natural gas hydrate exploration. Petroleum Geoscience 20, 187–199.
Milkov, A.V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 66, 183–197.
Mitchum Jr, R.M., Vail, P.R., Thompson III, S., 1977. Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.
Nedimović, M.R., Mazzotti, S., Hyndman, R.D., 2003. Three-dimensional structure from feathered two-dimensional marine seismic reflection data: The eastern Nankai Trough. Journal of Geophysical Research: Solid Earth 108.
Park, J.O., Tsuru, T., Kodaira, S., Cummins, P.R., Kaneda, Y., 2002. Splay fault branching along the Nankai subduction zone. Science 297, 1157–1160.
Payton, C.E., 1977. Seismic stratigraphy: applications to hydrocarbon exploration. American Association of Petroleum Geologists Tulsa, OK.
Pratson, L.F., Ryan, W.B., Mountain, G.S., Twichell, D.C., 1994. Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope. Geological Society of America Bulletin 106, 395–412.
Reed, D.L., Lundberg, N., Liu, C.S., Kuo, B.Y., 1992. Structural Relations along the Margins of the Offshore Taiwan Accrentionary Wedge: Implications for Accretion and Crustal Kinematics. Acta Gelological Taiwanica 105–122.
Riedel, M., Collett, T.S., Kumar, P., Sathe, A.V., Cook, A., 2010. Seismic imaging of a fractured gas hydrate system in the Krishna–Godavari Basin offshore India. Marine and Petroleum Geology 27, 1476–1493.
Roberts, A., 2001. Curvature attributes and their application to 3 D interpreted horizons. First break 19, 85–100.
Saffer, D.M., Tobin, H.J., 2011. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review of Earth and Planetary Sciences 39, 157–186.
Schnurle, P., Hsiuan, T.H., Liu, C.S., 1999. Constrains on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan. Petrol. Geol. Taiwan 33, 21–42.
Shaw, J.H., Connors, C.D., Suppe, J., others, 2005. Seismic interpretation of contractional fault-related folds: An AAPG seismic atlas.
Sheriff, R.E., 2012. Seismic stratigraphy. Springer Science & Business Media.
Sloan, E.D.J., 1998. Physical/chemical properties of gas hydrates and application to world margin stability and climatic change. Geological Society, London, Special Publications 137, 31–50.
Stolt, R.H., 1978. Migration by Fourier transform. Geophysics 43, 23–48.
Stolt, R.H., Benson, A.K., 1986. Seismic migration: Theory and practice. Pergamon.
Suppe, J., 1985. Principles of structural geology. Prentice Hall.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China 6, V33.
Talukder, A.R., 2012. Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova 24, 255–272.
Taner, M.T., 2001. Seismic attributes. CSEG recorder 26, 48–56.
Taner, M.T., Koehler, F., Sheriff, R.E., 1979. Complex seismic trace analysis. Geophysics 44, 1041–1063.
Taylor, M.H., Dillon, W.P., Pecher, I.A., 2000. Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Marine Geology 164, 79–89.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57–76.
Tingay, M.R., Hillis, R.R., Swarbrick, R.E., Morley, C.K., Damit, A.R., 2007. “Vertically transferred” overpressures in Brunei: Evidence for a new mechanism for the formation of high-magnitude overpressure. Geology 35, 1023–1026.
Tingdahl, K.M., De Groot, P., Heggland, R., Ligtenberg, H., 2001. Semi-automated object detection in 3-D seismic data. Offshore, August.
Travé, A., Labaume, P., Calvet, F., Soler, A., 1997. Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain). Tectonophysics 282, 375–398.
Vail, P.R., Sangree, J.B., 1977. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. Seismic stratigraphy—applications to hydrocarbon exploration: AAPG Mem 26, 117–134.
Yilmaz, Ö., 2001. Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of exploration geophysicists.
Yu, H.S., 2004. Nature and distribution of the deformation front in the Luzon Arc-Chinese continental margin collision zone at Taiwan. Marine Geophysical Researches 25, 109–122.
Yu, H.S., Chou, Y.W., 2001. Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics 333, 277–291.
Yu, H.S., Hong, E., 2006. Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences 27, 922–932.
Zhang, G., Liang, J., Lu, J. ’an, Yang, S., Zhang, M., Holland, M., Schultheiss, P., Su, X., Sha, Z., Xu, H., Gong, Y., Fu, S., Wang, L., Kuang, Z., 2015. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology 67, 356–367.
Zhu, M., Graham, S., Pang, X., McHargue, T., 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology 27, 307–319.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68152-
dc.description.abstract過去研究指出臺灣西南海域不論是活動或被動大陸邊緣區均有相當高的天然氣水合物賦存潛能。本研究分析近年來收集的高品質反射震測資料,探討南海大陸斜坡各探勘好景區,包括了九龍海脊、馬蹄鐵海脊、指標海脊與福爾摩沙海脊,以及位於變形前緣區的手掌海脊等5個天然氣水合物探勘好景區的天然氣水合物儲集系統,其次深入分析手掌海脊(橫跨變形前緣)與指標海脊(南海大陸斜坡)區的3維震測影像,探討大地構造與沉積環境對本區水合物儲集系統的影響,最後彙整分析結果,建立區域天然氣水合物儲集模式並探討其天然氣水合物的賦存潛能。
在技術發展方面,本研究利用浮纜定位資訊,開發真實3維震測資料處理技術,改善了資料的品質與解析度,有效提升後續資料分析以及地質解釋的可信度。由於古水道濁流砂層被認為是最佳的天然氣水合物儲集層,而斷層與氣囪構造更常扮演重要的地下流體移棲管道,詳細地辨識其空間位置並分析其震波特性,對於天然氣水合物儲集系統的研究至關重要。因此在研究方法方面,為期能從震測資料中擷取利用最大限度地相關地質資訊,本研究除了依循傳統的震測解釋方法,更應用震測屬性分析與類神經網路技術,幫助偵測如古水道濁流砂層、斷層以及氣囪構造等重要的地下地質目標。
橫跨變形前緣的震測剖面顯示手掌海脊區由西而東可分為正斷層區、原逆衝斷層區以及逆衝斷層區等三個主要的構造單元。由於變形前緣的定義為一聚合板塊邊界最前緣的壓縮構造,而位於前緣逆衝斷層西側的原逆衝斷層顯示由板塊聚合所造成的擠壓應力已經向西傳遞至此區域,本研究建議將變形前緣的位置西移至原逆衝斷層帶的西緣。藉由分析變形前緣區的構造與沉積特徵,本研究觀察到增積岩體向西發育的過程,並發現古水道(斜切陸坡走向)和現生海底峽谷(順坡方向)流向的顯著差異,因此本研究認為本區海底峽谷的演化亦受到板塊聚合的影響。從天然氣水合物儲集系統的角度而言,正斷層與逆衝斷層為手掌海脊區主要的流體移棲管道,這些流體管道使得深部的含天然氣流體得以向淺部傳輸,最後進入天然氣水合物穩定帶中,形成天然氣水合物,本區雖有背斜構造和古水道濁流砂層等良好的儲氣層,但因其位於天然氣水合物穩定帶以下,故不能成為天然氣水合物儲集層。
指標海脊區有一條東北-西南走向的主要正斷層構造,該斷層(稱為PR斷層)之上、下盤可分別觀察到沉積物波堆積與水道侵蝕特徵。震測屬性分析結果指出本區域主要的地下流體管道為PR斷層與其下盤之氣囪構造,這些地下流體管道位置和漁探儀在水層中觀測到的冒氣位置對應良好,指示了活躍的流體移棲現象;而PR斷層上盤的氣囪構造則多被沉積物深埋,可能較不活躍或已停止活動。震測資料顯示指標海脊區有許多古水道切蝕填充的痕跡,不論在PR斷層上、下盤均有古水道濁流砂層分布,特別是PR斷層下盤的古水道堆積物均位於天然氣水合物穩定帶中,是相當具潛能的天然氣水合物儲集層。
活躍的流體滲漏徵兆顯示南海大陸斜坡區的4個探勘好景區均有滲漏型探勘好景區的特性,以氣囪和正斷層構造為本區主要的地下流體管道,其中尤以福爾摩沙海脊的滲漏徵兆最為明顯,可期待在近海床的地層裂隙中取得天然氣水合物標本;而指標海脊區的砂質水合物儲集層則是研究區域中最富水合物探勘潛能的場址。本研究發現在南海大陸斜坡的活躍氣囪構造多出現在侵蝕特徵較明顯的環境,在沉積作用較穩定的環境則較少觀察到發育至近海床的氣囪構造,另在手掌海脊區則沒有發現氣囪構造,本研究認為此現象這可能是由於氣囪構造的發育受到了沉積環境與大地應力的影響而導致。
zh_TW
dc.description.abstractHigh potential gas hydrate reservoirs have been proposed in both active and passive margins offshore SW Taiwan. This study analyzes high quality seismic data for understanding the gas hydrate systems in gas hydrate prospects situated in the South China Sea continental slope and the deformation front. From west to east, they are Jiulong Ridge, Horseshoe Ridge, Pointer Ridge, Formosa Ridge and Palm Ridge. 3D seismic data images in Palm Ridge and Pointer Ridge prospects show the detail of the gas hydrate reservoir characters and reveal the relation between the geological processes and gas hydrate systems. Conceptual models of gas hydrate systems are constructed and then gas hydrate systems at different geological settings are compared.
To improve the quality and resolution of the 3D seismic images, this study has developed a true 3D seismic data processing technique by utilizing the streamer feathering information from closely spaced 2D seismic profiles. To best extract the information from seismic data, seismic attribute analyses and neural network techniques are applied to enhance the seismic characters of potential reservoirs and fluid conduits in subsurface, such as sandy paleo-channel deposits, faults and chimneys.
Three structural domains can be distinguished from seismic profiles that run across the deformation front from west to east in Palm Ridge: the normal fault zone, the proto-thrust zone, and the thrust fault zone. The presence of proto-thrusts that are located west of the frontal thrust implies that the compressional stress field has advanced westward due to the convergence of the Philippine Sea Plate and Eurasian Plate. Since the deformation front is defined as the location of the most frontal contractional structure, no significant contractional structure should appear west of it. We thus suggest moving the location of the previously mapped deformation front farther west to where the westernmost proto-thrust lies. High-resolution seismic and bathymetric data reveal that the directions of the paleo-submarine canyons run transverse to the present slope dip, while the present submarine canyons head down slope in the study area. We propose that this might be the result of westward migration of the deformation front that changed the paleo-bathymetry and thus the canyon path directions. The interactions of down-slope processes and active tectonics control the canyon paths in our study area. In terms of the gas hydrate system in the Palm Ridge prospect, normal faults and thrusts are major conduits for focused fluid flow. Although structural traps and turbidite channel sands are observed in Palm Ridge, none of them can be gas hydrate reservoirs because they all lie below the gas hydrate stability zone (GHSZ).
A NE-SW striking normal fault which is called the PR fault acts as a major structure in Pointer Ridge. Sediment wave deposition and canyon erosion features are observed on the hanging wall and the footwall of the PR fault, respectively. Results from seismic attribute analyses show major fluid conduits are the PR fault and the gas chimney features in the footwall of the PR fault. The locations of these fluid conduits correlate well with the gas plume sites observed from water column images, indicating the active fluid flow processes in Pointer Ridge. The chimneys in the hanging wall of the PR fault may not be active conduits for fluid migration since they are all buried by sediments. Paleo-channel cut and fill features indicate that turbidite sands are distributed on both sides of the PR fault. Overall, the most potential gas hydrate reservoirs are the paleo-channel deposits in the footwall of the PR fault which are situated in the GHSZ.
Our study results show that the four gas hydrate prospects located on the SCS continental slope have leakage-related structures such as chimneys and normal faults characterized by numerous seepage features, and gas hydrate samples might be recovered on or underneath the seafloor at shallow depth. This study proposes that the Formosa Ridge is the primary gas hydrate sampling site because of its strongest evidences of methane seepages, while the Pointer Ridge as the highest potential site for future gas hydrate development because the turbidite sands could trap significant amount of gases. Based on our observations, gas chimneys are likely to develop in erosion-dominated environments rather than deposition-dominated ones in the South China Sea slope, whereas there is no evidence of gas chimneys in the Palm Ridge area. These phenomena suggest the development of gas chimneys may be controlled by both of tectonic and sedimentary processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:34Z (GMT). No. of bitstreams: 1
ntu-106-F00241305-1.pdf: 20194634 bytes, checksum: 1cbd89d35b09a09eae61a59f3ddfdd94 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
表目錄 ix
圖目錄 x
第一章 續論 1
1-1 前言 1
1-2 研究區域與方法 6
1-3 研究目標 8
第二章 區域地質背景 10
2-1 大地構造 10
2-2 研究區域地質背景 13
2-2.1 研究區域之地質構造 13
2-2.2 研究區域之海底地形與沉積環境 16
第三章 研究資料與分析方法 18
3-1 資料種類與分布 18
3-2 多頻道反射震測資料處理流程 22
3-2.1 2維資料處理 23
3-2.2 仿3維與真實3維資料處理 25
3-3 震測資料的解釋與分析 33
3-3.1 震測屬性分析技術 33
3-3.2 類神經網路技術應用 38
第四章 南海大陸斜坡探勘好景區之天然氣水合物儲集特性研究 41
4-1 九龍海脊 43
4-2 馬蹄鐵海脊 47
4-3 指標海脊 51
4-4 福爾摩沙海脊 56
第五章 變形前緣區域之研究成果 60
5-1橫跨變形前緣之構造特徵 60
5-2震測相分析 65
5-3手掌海脊區之天然氣水合物儲集系統 69
第六章 指標海脊區域之研究成果 75
6-1 指標海脊之構造特徵與震測相分析 75
6-2 天然氣水合物儲集層與地下流體移棲管道之辨識 82
6-2.1 天然氣水合物儲集層辨識 82
6-2.2 地下流體管道偵測 84
6-3 指標海脊區之天然氣水合物儲集系統 92
第七章 討論 94
7-1 變形前緣位置更新及手掌海脊區之古水道流向演化 94
7-2 沉積環境與大地應力對氣囪構造發育之影響 98
7-3 增積岩體與大陸斜坡之天然氣水合物儲集系統比較 99
第八章 結論 102
參考文獻 104
dc.language.isozh-TW
dc.subject天然氣水合物zh_TW
dc.subject變形前緣zh_TW
dc.subject3維震測zh_TW
dc.subject震測屬性zh_TW
dc.subject流體移棲zh_TW
dc.subjectgas hydratesen
dc.subjectdeformation fronten
dc.subject3D seismicen
dc.subjectseismic attributesen
dc.subjectfluid migrationen
dc.title以反射震測資料探討臺灣西南海域南海大陸斜坡之天然氣水合物儲集系統zh_TW
dc.titleSeismic Study on the Gas Hydrate Systems in the South China Sea Continental Slope Offshore SW Taiwanen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳松春,羅聖宗,林殿順,戚務正,許樹坤
dc.subject.keyword天然氣水合物,變形前緣,3維震測,震測屬性,流體移棲,zh_TW
dc.subject.keywordgas hydrates,deformation front,3D seismic,seismic attributes,fluid migration,en
dc.relation.page112
dc.identifier.doi10.6342/NTU201704383
dc.rights.note有償授權
dc.date.accepted2017-11-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
19.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved