Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施修明(Hsiu-Ming Shih)
dc.contributor.authorTien-Chi Huangen
dc.contributor.author黃天祺zh_TW
dc.date.accessioned2021-05-17T09:18:41Z-
dc.date.available2017-09-18
dc.date.available2021-05-17T09:18:41Z-
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-12
dc.identifier.citationReferences
1. Salomoni, P. and A.F. Khelifi, Daxx: death or survival protein? Trends Cell Biol, 2006. 16(2): p. 97-104.
2. Yang, X., et al., Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997. 89(7): p. 1067-76.
3. Wu, S., H.N. Loke, and A. Rehemtulla, Ultraviolet radiation-induced apoptosis is mediated by Daxx. Neoplasia, 2002. 4(6): p. 486-92.
4. Perlman, R., et al., TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol, 2001. 3(8): p. 708-14.
5. Michaelson, J.S., et al., Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev, 1999. 13(15): p. 1918-23.
6. Michaelson, J.S. and P. Leder, RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci, 2003. 116(Pt 2): p. 345-52.
7. Zhong, S., et al., Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med, 2000. 191(4): p. 631-40.
8. Ishov, A.M., et al., PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 1999. 147(2): p. 221-34.
9. Lin, D.Y., et al., Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell, 2006. 24(3): p. 341-54.
10. Li, H., et al., Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol, 2000. 20(5): p. 1784-96.
11. Lehembre, F., et al., Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene, 2001. 20(1): p. 1-9.
12. Nefkens, I., et al., Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J Cell Sci, 2003. 116(Pt 3): p. 513-24.
13. Hollenbach, A.D., et al., Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci, 2002. 115(Pt 16): p. 3319-30.
14. Xue, Y., et al., The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A, 2003. 100(19): p. 10635-40.
15. Ishov, A.M., O.V. Vladimirova, and G.G. Maul, Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci, 2004. 117(Pt 17): p. 3807-20.
16. Drane, P., et al., The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev, 2010. 24(12): p. 1253-65.
17. Goldberg, A.D., et al., Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 2010. 140(5): p. 678-91.
18. Pluta, A.F., W.C. Earnshaw, and I.G. Goldberg, Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death. J Cell Sci, 1998. 111 ( Pt 14): p. 2029-41.
19. Lalioti, V.S., et al., The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. J Biol Chem, 2002. 277(22): p. 19783-91.
20. Ko, Y.G., et al., Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem, 2001. 276(42): p. 39103-6.
21. Charette, S.J., et al., Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol, 2000. 20(20): p. 7602-12.
22. Jung, Y.S., et al., Physical interactions and functional coupling between Daxx and sodium hydrogen exchanger 1 in ischemic cell death. J Biol Chem, 2008. 283(2): p. 1018-25.
23. Junn, E., et al., Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci U S A, 2005. 102(27): p. 9691-6.
24. Puto, L.A. and J.C. Reed, Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev, 2008. 22(8): p. 998-1010.
25. Muromoto, R., et al., Physical and functional interactions between Daxx and DNA methyltransferase 1-associated protein, DMAP1. J Immunol, 2004. 172(5): p. 2985-93.
26. Li, R., et al., EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene, 2000. 19(6): p. 745-53.
27. Emelyanov, A.V., et al., The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J Biol Chem, 2002. 277(13): p. 11156-64.
28. Kim, E.J., J.S. Park, and S.J. Um, Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res, 2003. 31(18): p. 5356-67.
29. Zhao, L.Y., et al., Negative regulation of p53 functions by Daxx and the involvement of MDM2. J Biol Chem, 2004. 279(48): p. 50566-79.
30. Lin, D.Y., et al., Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J Biol Chem, 2003. 278(18): p. 15958-65.
31. Lin, D.Y., et al., Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol, 2004. 24(24): p. 10529-41.
32. Chang, C.C., et al., Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem, 2005. 280(11): p. 10164-73.
33. Muromoto, R., et al., Physical and functional interactions between Daxx and STAT3. Oncogene, 2006. 25(14): p. 2131-6.
34. Croxton, R., et al., Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB. Cancer Res, 2006. 66(18): p. 9026-35.
35. Park, J., et al., Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. J Mol Biol, 2007. 368(2): p. 388-97.
36. Huang, Y.S. and H.M. Shih, Daxx positively modulates beta-catenin/TCF4-mediated transcriptional potential. Biochem Biophys Res Commun, 2009. 386(4): p. 762-8.
37. Shih, H.M., et al., Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans, 2007. 35(Pt 6): p. 1397-400.
38. Lindsay, C.R., V.M. Morozov, and A.M. Ishov, PML NBs (ND10) and Daxx: from nuclear structure to protein function. Front Biosci, 2008. 13: p. 7132-42.
39. Tang, J., et al., Critical role for Daxx in regulating Mdm2. Nat Cell Biol, 2006. 8(8): p. 855-62.
40. Michod, D., et al., Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron, 2012. 74(1): p. 122-35.
41. Lewis, P.W., et al., Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A, 2010. 107(32): p. 14075-80.
42. Akterin, S., et al., Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease. Cell Death Differ, 2006. 13(9): p. 1454-65.
43. Jiao, Y., et al., DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 2011. 331(6021): p. 1199-203.
44. Heaphy, C.M., et al., Altered telomeres in tumors with ATRX and DAXX mutations. Science, 2011. 333(6041): p. 425.
45. Carninci, P., et al., The transcriptional landscape of the mammalian genome. Science, 2005. 309(5740): p. 1559-63.
46. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14.
47. Bertone, P., et al., Global identification of human transcribed sequences with genome tiling arrays. Science, 2004. 306(5705): p. 2242-6.
48. Ponjavic, J., C.P. Ponting, and G. Lunter, Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res, 2007. 17(5): p. 556-65.
49. Struhl, K., Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol, 2007. 14(2): p. 103-5.
50. Guttman, M., et al., Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 2010. 28(5): p. 503-10.
51. Guttman, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009. 458(7235): p. 223-7.
52. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011. 25(18): p. 1915-27.
53. Lee, J.T., Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev, 2009. 23(16): p. 1831-42.
54. Rinn, J.L., et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007. 129(7): p. 1311-23.
55. Wang, K.C., et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011. 472(7341): p. 120-4.
56. Guttman, M., et al., lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011. 477(7364): p. 295-300.
57. Huarte, M., et al., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010. 142(3): p. 409-19.
58. Gupta, R.A., et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010. 464(7291): p. 1071-6.
59. Loewer, S., et al., Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet, 2010. 42(12): p. 1113-7.
60. Zhao, J., et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008. 322(5902): p. 750-6.
61. Nagano, T., et al., The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008. 322(5908): p. 1717-20.
62. Tsai, M.C., et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010. 329(5992): p. 689-93.
63. Khalil, A.M., et al., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A, 2009. 106(28): p. 11667-72.
64. Zhao, J., et al., Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 2010. 40(6): p. 939-53.
65. Kim, T.K., et al., Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010. 465(7295): p. 182-7.
66. Wang, D., et al., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature, 2011. 474(7351): p. 390-4.
67. Orom, U.A., et al., Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010. 143(1): p. 46-58.
68. Mao, Y.S., B. Zhang, and D.L. Spector, Biogenesis and function of nuclear bodies. Trends Genet, 2011. 27(8): p. 295-306.
69. Clemson, C.M., et al., An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 2009. 33(6): p. 717-26.
70. Chen, L.L. and G.G. Carmichael, Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 2009. 35(4): p. 467-78.
71. Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010. 39(6): p. 925-38.
72. Ishii, N., et al., Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet, 2006. 51(12): p. 1087-99.
73. Mendell, J.T. and E.N. Olson, MicroRNAs in stress signaling and human disease. Cell, 2012. 148(6): p. 1172-87.
74. Geng, Y.J., et al., Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res, 2011. 39(6): p. 2119-28.
75. Kogo, R., et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res, 2011. 71(20): p. 6320-6.
76. Gibb, E.A., et al., Human cancer long non-coding RNA transcriptomes. PLoS One, 2011. 6(10): p. e25915.
77. Chang, C.C., et al., Structural and Functional Roles of Daxx SIM Phosphorylation in SUMO Paralog-Selective Binding and Apoptosis Modulation. Mol Cell, 2011. 42(1): p. 62-74.
78. Yap, K.L., et al., Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010. 38(5): p. 662-74.
79. Schwartzentruber, J., et al., Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012. 482(7384): p. 226-31.
80. Hermeking, H., The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010. 17(2): p. 193-9.
81. Ip, J.Y. and S. Nakagawa, Long non-coding RNAs in nuclear bodies. Dev Growth Differ, 2011.
82. Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): p. 553-60.
83. Garcia, M.J., et al., A 1 Mb minimal amplicon at 8p11-12 in breast cancer identifies new candidate oncogenes. Oncogene, 2005. 24(33): p. 5235-45.
84. Yang, Z.Q., et al., Multiple interacting oncogenes on the 8p11-p12 amplicon in human breast cancer. Cancer Res, 2006. 66(24): p. 11632-43.
85. Yang, Z.Q., et al., Transforming properties of 8p11-12 amplified genes in human breast cancer. Cancer Res, 2010. 70(21): p. 8487-97.
86. Holland, D.G., et al., ZNF703 is a common Luminal B breast cancer oncogene that differentially regulates luminal and basal progenitors in human mammary epithelium. EMBO Mol Med, 2011. 3(3): p. 167-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6814-
dc.description.abstractDaxx 蛋白質最初被證明在細胞質內與Fas受體的凋亡區段互相結合,並扮演訊息傳遞重要的角色,然而許多報導指出,Daxx主要在細胞核內執行基因轉錄調節的功能。為了更進一步瞭解Daxx 對於基因表現的影響,本實驗利用微陣列晶片系統性的找尋Daxx調控的編碼基因(protein-coding gene) 及長非編碼RNA (large intergenic non-coding RNA)。分析結果指出當抑制Daxx表現時,顯著地調控655個基因的表達,進一步利用基因功能性分析,發現其中許多基因與細胞型態及癌症生成高度相關。此結果暗示Daxx可能參與癌症轉移的調控。另一方面,當抑制Daxx表現時,細胞內有104個長非編碼RNA表現量出現顯著差異。進一步利用生物資訊分析方法,篩選出Daxx可能調控的長非編碼RNA,我們並利用補救實驗及反轉錄定量聚合酶鏈式反應( RT-qPCR) 驗證該分析結果。結果證實12個長非編碼RNA受到Daxx調控,其中包含功能已知的lincRNA, 如JPX, NEAT1及MIAT。接著,我們利用RNA干擾技術發現其中一個長非編碼RNA,linc4971的表現對於其上游基因,ZNF703及ERLIN2具有抑制的作用。整體來說,本實驗結果除了提供Daxx 可能調控的標的基因及長非編碼RNA,並指出Daxx可藉由調控長非編碼RNA影響下游基因的表現。zh_TW
dc.description.abstractThe death domain-associated protein (Daxx) participates in various biological processes depending on its sub-cellular localization. In the nucleus, Daxx, as a transcriptional coregulator, interacts with various proteins, including transcription factors, to regulate gene expression. Although many Daxx-regulated genes have been reported, a genome-wide analysis of gene expression profile regulated by Daxx largely remains unclear. Here, we used microarray analysis to identify Daxx-regulated protein-coding genes as well as non-coding RNAs. 655 genes were significantly regulated in Daxx knockdown cells. Gene ontology analysis demonstrated that Daxx-regulated genes showed significant asssociation with cell morphology and cancer, suggesting that Daxx may play a role in tumor formation. Moreover, by combining microarray data and bioinformatic analysis, we identified 45 Daxx-regulated large intergenic non-coding RNAs (lincRNAs). Some identified lincRNAs, such as JPX, NEAT1 and MIAT, are functionally well-known, while most are recently defined transcripts. Notably, knockdown of identified lincRNA linc-4971 resulted in a activation of nearby gene expression, suggesting that this lincRNA may act as regulatory node in Daxx-mediated transcriptional pathways.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:41Z (GMT). No. of bitstreams: 1
ntu-101-R99448013-1.pdf: 1873252 bytes, checksum: a2b87f5f42d60a2d1ffc8542a7bdd314 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 1
English Abstract 2
Chapter I: Introduction 3
Daxx 4
LincRNAs 11
Specific aims 18
Chapter II: Materials and Methods 19
Cell culture and transfection 20
Plasmids and RNA interference 20
RT-quantitative PCR (RT-qPCR) 20
Microarray analysis 24
Chapter III Results 27
Transcriptional profile of knockdown of Daxx 28
The identification of Daxx-regulated lincRNAs 29
Evolutionary conservation of Daxx-mediated lincRNAs 30
Chromatin signature of Daxx-mediated lincRNAs 31
Tissue specificity of Daxx-mediated lincRNAs 31
Daxx-regulated lincRNAs affect gene expression in cis 32
Chapter IV: Discussion 34
Chapter V: Figures 41
Chapter VI: Tables 53
References 56
dc.language.isoen
dc.titleDaxx調控非編碼長RNA之鑑定及分析zh_TW
dc.titleIdentification and analysis of Daxx-regulated large intergenic non-coding RNAsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee阮麗蓉(Li-Jung Juan),徐立中(Li-Chung Hsu)
dc.subject.keywordDaxx,微陣列晶片分析,長非編碼RNA,zh_TW
dc.subject.keywordDaxx,large intergenic non-coding RNA,microarray,en
dc.relation.page61
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved