Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王富正(Fu-Cheng Wang)
dc.contributor.authorYu-Ting Tengen
dc.contributor.author鄧宇廷zh_TW
dc.date.accessioned2021-06-17T02:13:20Z-
dc.date.available2020-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-03
dc.identifier.citation[1] Toyota Camry Hybrid:
http://www.toyota.com.tw/showroom/CAMRY_HYBRID#/
[2] Ford Mondeo Hybrid:
https://www.ford.com.tw/cars/mondeo/features/performance/?intcmp=vhp-return-features
[3] Tesla:
https://www.tesla.com/
[4] Gogoro:
http://www.gogoro.com/tw/
[5] Toyota Mirai FCV:
https://ssl.toyota.com/mirai/fcv.html
[6] Hyundai IX35 FCV:
https://www.hyundai.com/worldwide/en/eco/ix35-fuelcell/highlights
[7] Gao, D., Jin, Z., Lu, Q., “Energy management strategy based on fuzzy logic for a fuel cell hybrid bus”, Journal of Power Sources, 185 Pages 311–317,2008.
[8] Hsiao, D.R., Huang,B.W., Shih, N.C., “Development and dynamic characteristics of hybrid fuel cell-powered mini-train system”, International journal of hydrogen energy, 37 Pages 1058-1066,2012.
[9] Taegyu, K., Sejin, K., “Design and development of a fuel cell-powered small unmanned aircraft”, International Journal of Hydrogen Energy, Volume 37, Pages 615-622 .
[10] Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H., “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, International Journal of Hydrogen Energy, Volume 27, Pages 1029–1034, 2002.
[11] Wang, F.C., Li, S.C., “The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell”, International Journal Hydrogen Energy, Volume 41, Issue 4, Pages 3038-3051.
[12] Hydrogen:
https://en.wikipedia.org/wiki/Hydrogen
[13] Verhelst, S., Wallner, T., “Hydrogen-fueled internal combustion engines”, Progress in Energy and Combustion Science, Volume 35, Issue 6, Pages 490–527.
[14] Bergen, A., Pitt, L., Rowe, A., Wild, P., & Djilali, N., “ Experimental assessment of a residential scale renewable–regenerative energy system,” Journal of Power Sources, 186(1): pp. 158–166, 2009.
[15] Lee, H.S., Jeong, K.S., Oh, B.S., “An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles”, International Journal of Hydrogen Energy, 28(2): pp. 215-222, 2003.
[16] Li, T.Y., Liu, H.Y., Zhao, D.X., Wanga, L., “Design and analysis of a fuel cell supercapacitor hybrid construction vehicle”, International Journal of Hydrogen Energy, Volume 41, Issue 28, Pages 12307–12319.
[17] Wang, F.C., Chiang, Y.S., “Design and control of a PEMFC powered electric wheelchair”, International Journal of Hydrogen Energy, Vol. 37, pp. 11299–11307, 2012.
[18] Li, Z.P., Morigazaki, N., Liu, B.H., Suda, S., “Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature”, Journal of Alloys and Compounds Volume 349, Issues 1–2, Pages 232–236.
[19] United States Department of Energy:
https://energy.gov/eere/fuelcells/hydrogen-storage
https://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf
[20] Sodium Borohydride( ):
https://en.wikipedia.org/wiki/Sodium_borohydride
[21] Yoshitsugu Kojima, Ken-ichirou Suzuki, Kazuhiro Fukumoto, Yasuaki Kawai, Masahiko Kimbara, Haruyuki Nakanishi, Shinichi Matsumoto, “Development of 10 kW-scale hydrogen generator using chemical hydride”, Journal of Power Sources Volume 125, Issue 1, Pages 22–26.
[22] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., “Sodium borohydride, its use as a reducing agent and in the generation of hydrogen”, Journal of the American Chemical Society, Volume 75, Pages 215–219, 1953.
[23] Kreevoy, M.M., Jacobson, R.W., “The rate of decomposi- tion of NaBH4in basic aqueous solutions”, Ventron Alembic, Volume 15, Pages 2–3, 1953.
[24] Wang, F.C., Fang, W.H., “The development of a PEMFC hybrid power electric vehicle with automatic sodium borohydride hydrogen generation”, International Journal of Hydrogen Energy, Volume 42, Issue 15, Pages 10376–10389.
[25] Guo, Y.F., Chen, H.C., Wang, F.C., “The development of a hybrid PEMFC power system,’’ International Journal of Hydrogen Energy, 40(13):pp.4630-4640, 2015.
[26] NI DAQ USB-6212:
http://www.ni.com/pdf/manuals/375196c.pdf
[27] S-bond KD-Y33:
http://www.sbond.asia/download/KD+KD2.pdf
[28]  Gigarise SD-100:
http://www.gigarise.com.tw/data/b78e35.pdf
[29] 台灣燃料電池資訊網:
http://www.tfci.org.tw/Fc/class.asp
[30] PEMFC Assembly:
https://www.scientific-computing.com/feature/fuel-thought-cars-future
[31] Zhang, J.S., Zheng, Y., Gore, J.P., Fisher, T.S., “1 kWe sodium borohydride hydrogen generation system: Part I: Experimental study”, Journal of Power Sources, Volume 165, Pages 844–853, 2007.
[32] 黃鎮江編著,燃料電池,修訂二版,全華圖書,台北市,2007。
[33] Larmine, J. and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, 2003.
[34] M-field 3kW PEMFC:http://www.fuelcellmarkets.com/M_Field_Energy_Fuel_Cell_Backup_Power/forming_relationships/3,1,28266,18,28934.html
[35] Ballard 1020ACS 3kW:http://140.112.14.7/~sic/PaperMaterial/MAN5100192_new%20guide_mark1020.pdf
[36] Alicat flowmeter:
www.alicatscientific.com/
[37] Skinner Solenoid valve:
www.phionline.com/M%20VALVE_ACTUATION.pdf
[38] Gas pressure regulator:
www.fishercommercialservice.com/
[39] M-field CP-Series 3kW DC/DC Converter:
http://www.m-field.com.tw/product_converter.php
[40] MW TS-3000 DC/AC DC/AC Inverter:
https://www.pewatron.com/fileadmin/products/datasheets/194/040-07-409-021-EH-0413.pdf
[41] Kaufman, C.M., Sen, B.J., “Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts”, Journal of the Chemical Society, Volume 2, Page 307–313, 1985.
[42] Bürkert Type-0330:
https://www.burkert.com/type/0330
[43] Huba Control Pressure Censor:
http://www.hubacontrol.com/en/products/pressure-transmitter/pressure-sensor-528/
[44] Bronkhorst MVM-005Q:
http://www.massflow-online.com/shop/en/magnetic-flow-meter-0-25-5-lpm-157.html
[45] Alicat JC-ALI-M:
www.alicatscientific.com/
[46] Shang, Y.H., Chen, R., Jiang, G., “Kinetic study of NaBH4 hydrolysis over carbon supported ruthenium”, Loughborough University Institutional Repository, 2008.
[47] De Dietrich Powder Pump Feeding Process:
https://www.youtube.com/watch?v=-MdZZ4CRXzw
[48] Powder Flowmeter:
http://www.fayin.com.tw/faenews/d-sankyo.htm
[49] Rotary Valve:
http://rotodisc.com/double-dump-airlock-double-dump-valves/
[50] 台灣三住公司(MuSUMi):
http://tw.misumi-ec.com/
[51] 大豐膠囊公司:
http://en.dfc.com.tw/about_us/
[52] 新麗芳企業股份有限公司:
http://slfcap.com.tw/index1.php
[53] 手動膠囊製作流程:
https://www.youtube.com/watch?v=yR3aodby8Ao
[54] 防潮箱半導體晶片乾燥器原理:
http://www.yiwei-fangchao.url.tw/fang-chao-xiang-chu-shi-yuan-li/
https://www.oyag.com/3757/drytech543
[55] 防潮箱物理吸濕型乾燥器原理:
https://www.oyag.com/3757/drytech543
[56] 收藏家FD-25:
https://shop.drytech.com.tw/products/fd-25
[57] 泉全公司氣動式閘刀閥:
http://www.valve-chuanchuan.com/product-Pneumatic-stainless-steel-knife-gate-valves-1-04.html
[58] Airtac 4V210-08:
https://trimantec.com/wp-content/uploads/2015/10/Airtac-4V200_Trimantec-UPDATE.pdf
[59] Hydrogen Embrittlement:
https://en.wikipedia.org/wiki/Hydrogen_embrittlement
[60] 錦德氣體有限公司:
http://www.jdgas.com.tw/index.php?option=product&lang=cht&task=pageinfo&id=19&index=13
[61] KNF NPK 09 DC Air Pump:
file:///C:/Users/Jerome/Downloads/DataSheet_NPK09_E308_201704_web.pdf
[62] JPT-131壓力感測器:
http://jetec.com.tw/pdf/3/english/JPT131_E_data.pdf
[63] Shako PU220A-04電磁閥:
http://www.shako.com.tw/proimages/pdf/en/22_WAY_SOLENOID_VALVES/PU220A.pdf
[64] Aichitokei ND10 TATAAA Flowmeter:
https://www.aichitokei.net/products/flow-sensor-nd/
[65] 聚碳酸酯(Polycarbonate;PC):
https://en.wikipedia.org/wiki/Polycarbonate
[66] Tritan共聚酯材質:
http://www.eastman.com/Brands/eastman_tritan/Pages/Overview.aspx
[67] 高爾夫球車行駛距離參考:
http://www.marshell.net/en/products/green-club-resort/golf?gclid=
Cj0KEQjw7dfKBRCdkKrvmfKtyeoBEiQAch0egaZ-MbSlJTBfh28JLtB2v69-ss1kPy91S-ws8vO-6hwaAjAZ8P8HAQ
[68] 氫氣運送成本參考資料:
http://www.nrel.gov/docs/fy14osti/60528.pdf
[69] 常見物質能量密度:
https://en.wikipedia.org/wiki/Energy_density
[70] Reddi, K., Elgowainy, A., Rustagi, N., Gupta, E., “Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen”, International Journal of Hydrogen Energy, Available online 30 June 2017
[71] Gis, W., Zoltowski, A., Bochenska, A., “Testing of the Electric Vehicle in driving cycles”, Journal of KONES Powertrain and Transport, Vol 19, No. 4, 2012.
[72] Chen, J.S., “Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles”, Journal of Energies, 2015.
[73] Grillaert, K., Pace, G., Claessens, L., “Technical Report on EV laboratory Tests”, Electro Mobility North Sea Region, 2014.
[74] Chen, L., Wang, J., Lombard, P., Lazari, P., Leconte, V., “High-Efficiency Motor Design for Electric Vehicles”, Flux Conference, 2012.
[75] Hofer, J., “Sustainability Assessment of Passenger Vehicles Analysis of Past Trends and Future Impacts of Electric Powertrains”.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68140-
dc.description.abstract本論文開發一套硼氫化鈉(Sodium borohydride;NaBH4)自動進料系統,用以供應本實驗室已架設完成之燃料電池混合電力電動車使用,此自動進料系統根據已開發之化學產氫系統需求所設計,用以調配定量硼氫化鈉溶液,並多次測試自動進料系統產氫量。此外亦使用Matlab/SimpowerSystemTM模擬自動進料系統供應市售規格之燃料電池電動車所能提升之能量密度與行駛距離。
實際架設之前,優先根據硼氫化鈉粉末易吸水潮解之性質,並以提升能量密度與進料次數為目標,構思多種自動進料系統設計架構,並比較各種設計之優缺點與建構容易度。本論文最終使用物理吸濕式防潮箱與兩個氣動式閘刀閥(Knife Gate Valve)做為粉末進料架構主要元件,在防潮箱中保存大量硼氫化鈉粉末,並使用管道連結防潮箱與閘刀閥,利用兩個閘刀閥之間的空間進行硼氫化鈉粉末定量批次進料,依照所配置的化學產氫機燃料濃度需求設計批次粉末進料量並搭配水箱與果汁機,以達到完整的硼氫化鈉溶液調配流程,同時根據本實驗室已建構完成之燃料電池混合電力電動車內部所能利用之有限空間,架設一套硼氫化鈉自動進料系統。
為測試架設完成之系統穩定性,進行多次閘刀閥開啟時間操作以測試粉末進料量,並測試自動進料系統與化學產氫系統結合後實際產氫誤差量。最終根據市售車輛油箱規格,討論自動進料系統粉末與水箱容量最佳配置比例以及為電動車所提升的能量密度與行駛距離,除此之外,亦利用 模擬市售規格之燃料電池電動車輛搭載自動進料系統後行駛距離量,以此探討自動進料系統在未來市售規格燃料電池電動車中行程增益,以此評估移動式供電站之發展可行性。
zh_TW
dc.description.abstractThis thesis develops a sodium borohydride (NaBH4) auto-feeding system that can supply hybrid Proton Exchange Membrane Fuel Cell (PEMFC) electric vehicle built by our laboratory. The auto-feeding system is designed in accordance with the quantity of NaBH4 solution which is the demand of the chemical hydrogen generator, and we test the hydrogen product error of the complete system several times. Moreover, we simulate the energy density and driving distance for the marketable PEMFC electric vehicle using auto-feeding system by Matlab/SimpowerSystemTM.
For rising the energy density and feeding times, we design and compare various types of auto-feeding system structure based on the deliquescence of NaBH4 powder. Finally, we choose the dry cabinet and two pneumatic knife gate valves as the main components of powder-feeding structure, and use a passage to connect the dry cabinet, which preserves NaBH4, with the knife gate valve. The space of two knife gate valves can quantitate the NaBH4 powder for each batch, and the quantity of NaBH4 powder is set in accordance with the requirement of the chemical hydrogen generator. Therefore, we can accomplish the NaBH4 solution dispensing procedure with water tank and juicer, and choose the suitable sizes for all components based on the useable space from our PEMFC electric vehicle.
For testing the stability of the system, we control opening time of the knife gate valves repeatedly to measure the powder-feeding quantity, and combine the auto-feeding system with chemical hydrogen generator to test the real hydrogen product error. Finally, according to the fuel tank volume of marketable vehicle, the optimal volume ratio of the water tank to NaBH4 tank is discussed. Moreover, we compare our PEMFC electric vehicle using auto-feeding system and NaBH4 solution fuel tank about the energy density and the driving distance. Furthermore, we build a simulation system in Matlab/SimpowerSystemTM based on the marketable PEMFC electric vehicle, and simulate the vehicle driving with auto-feeding system to discuss the distance improvement. According to the simulation result, the practicality of movable power station can be estimated.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:20Z (GMT). No. of bitstreams: 1
ntu-106-R04522827-1.pdf: 11147092 bytes, checksum: f1ba542b69564e67a06c54f996d68bd4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract III
表目錄 IX
圖目錄 XI
符號表 XVI
縮寫表 XIX
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 文章架構 4
第二章 混合電力系統與電動車輛空間介紹 5
2.1 燃料電池混合電力電動車系統介紹 5
2.1.1全系統架構 5
2.1.2整合概況與空間配置 10
2.1.3訊號量測電路 14
2.2 燃料電池系統 16
2.2.1 燃料電池基本發電原理 16
2.2.2 燃料電池極化特性 20
2.2.3燃料電池系統硬體架構 24
2.2.4 DC/DC直流轉換器與DC/AC逆變器介紹 28
2.2.5燃料電池溫度控制策略 29
2.3 化學產氫系統 31
2.3.1化學產氫系統原理 31
2.3.2化學產氫系統硬體架構 34
2.3.3產氫操作流程 41
2.3.4硼氫化鈉容量與濃度測試 42
2.4太陽能系統 44
2.4.1太陽能發電原理 44
2.4.2混合電力電動車之太陽能板配置 46
第三章 自動進料系統構思方案 47
3.1自動進料系統簡介與考量因素 47
3.2閥件進料式系統 49
3.2.1設計架構及硬體需求 51
3.2.2系統優缺點 56
3.3活塞進料式系統 57
3.3.1設計架構及硬體需求 57
3.3.2系統優缺點 59
3.4左輪進料式系統 60
3.4.1設計架構及硬體需求 60
3.4.2系統優缺點 62
3.5輸送帶進料式系統 63
3.5.1設計架構及硬體需求 63
3.5.2系統優缺點 65
3.6膠囊進料式系統 66
3.6.1系統介紹 66
3.6.2系統優缺點 66
3.6.3系統測試實驗 68
3.7構思方案優缺點比較與選擇因素 69
第四章 自動進料系統硬體架構與測試 71
4.1自動進料系統全系統架構 71
4.2自動進料系統硬體選擇 72
4.2.1防潮設備硬體選擇 72
4.2.2閥件進料式硬體選擇 78
4.2.3純水進料硬體選擇 84
4.2.4攪拌混合系統硬體選擇 84
4.3自動進料系統空間規劃 85
4.4自動進料系統操作流程 89
4.5純水進料測試 90
4.6硼氫化鈉粉末進料測試 93
4.6.1壓力傳送器穩定性測試 93
4.6.2硼氫化鈉粉末進料量影響因素 94
4.6.3閘刀閥啟動維持時間與管道角度對粉末進料量影響測試 96
第五章 自動進料系統與燃料電池混合電力電動車輛整合 101
5.1自動進料系統與混合電力電動車整合情況 101
5.2自動進料系統控制面板設計 103
5.3連續自動進料啟動時機判斷標準 108
5.4實際粉末進料量測試 110
5.4.1單次閘刀閥啟動進料量測試 110
5.4.2連續兩次閘刀閥啟動進料量測試 113
5.5自動進料與化學產氫系統結合之產氫量與誤差值 114
5.5.1自動進料系統進料產氫量測試 114
5.5.2含有氫氧化鈉之15wt.%硼氫化鈉溶液產氫量測試 116
5.5.3不含氫氧化鈉之15wt.%硼氫化鈉溶液產氫量測試 117
5.5.4產氫量比較結果 119
5.5.5自動進料系統連續批次進料測試 120
第六章 自動進料系統配置最佳化與能量密度評估 123
6.1燃料電池混合電力系統體積與重量百分比 123
6.1.1自動進料系統體積與重量百分比 124
6.1.2完整燃料電池混合電力系統體積與重量百分比 125
6.2混合電力電動車能量密度與行駛距離 127
6.2.1能量密度計算公式 128
6.2.2行駛距離計算方式 129
6.2.3能量密度與行駛距離計算結果 130
6.2.4能量密度分析結論 134
6.3 MATLAB市售規格電動車輛模型建立與模擬 138
6.3.1 Matlab車輛模型架設與規格 138
6.3.2行駛距離模擬結果 142
第七章 結論與未來展望 145
7.1 論文總結 145
7.2 未來展望 146
Reference 147
口試委員之問題與回答 155
dc.language.isozh-TW
dc.subject自動進料zh_TW
dc.subject化學產氫zh_TW
dc.subject硼氫化鈉zh_TW
dc.subject燃料電池zh_TW
dc.subject電動車zh_TW
dc.subject能量密度zh_TW
dc.subjectEnergy densityen
dc.subjectChemical hydrogen generatoren
dc.subjectElectric vehicleen
dc.subjectAuto-feeding systemen
dc.subjectSodium borohydrideen
dc.subjectFuel Cellen
dc.title含有化學產氫系統之燃料電池電動車自動進料系統研發zh_TW
dc.titleThe Development of an Auto-Feeding System for the PEMFC Electric Vehicle with Chemical Hydrogen Generation Systemen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺(Jia-Yush Yen),林振生(Zhen-Sheng Lin)
dc.subject.keyword自動進料,化學產氫,硼氫化鈉,燃料電池,電動車,能量密度,zh_TW
dc.subject.keywordAuto-feeding system,Chemical hydrogen generator,Sodium borohydride,Fuel Cell,Electric vehicle,Energy density,en
dc.relation.page158
dc.identifier.doi10.6342/NTU201704428
dc.rights.note有償授權
dc.date.accepted2017-12-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
10.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved