Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜裕康(Yu-Kang Tu yukangtu@ntu.edu.tw )
dc.contributor.authorChi-Chieh Huangen
dc.contributor.author黃琪婕zh_TW
dc.date.accessioned2021-06-17T02:13:19Z-
dc.date.available2023-08-01
dc.date.copyright2020-09-01
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Moses, L.E.; Shapiro, D.; Littenberg, B. Combining independent studies of a diagnostic test into a summary roc curve: Data-analytic approaches and some additional considerations. Statistics in Medicine 1993, 12, 1293–1316.
2. Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.S.; Scholten, R.J.P.M.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 2005, 58, 982–990.
3. Rutter, C.M.; Gatsonis, C.A. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Statist. Med. 2001, 20, 2865–2884.
4. Owen, R.K.; Cooper, N.J.; Quinn, T.J.; Lees, R.; Sutton, A.J. Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making. Journal of Clinical Epidemiology 2018, 99, 64–74.
5. Trikalinos, T.A.; Hoaglin, D.C.; Small, K.M.; Terrin, N.; Schmid, C.H. Methods for the joint meta-analysis of multiple tests: Methods for the Joint Meta-Analysis of Multiple Tests. Res. Syn. Meth. 2014, 5, 294–312.
6. Menten, J.; Lesaffre, E. A general framework for comparative Bayesian meta-analysis of diagnostic studies. BMC Med Res Methodol 2015, 15, 70.
7. Hoyer, A.; Kuss, O. Meta-analysis for the comparison of two diagnostic tests to a common gold standard: A generalized linear mixed model approach. Stat Methods Med Res 2018, 27, 1410–1421.
8. Nyaga, V.N.; Aerts, M.; Arbyn, M. ANOVA model for network meta-analysis of diagnostic test accuracy data. Stat Methods Med Res 2018, 27, 1766–1784.
9. N Nyaga, V.; Arbyn, M.; Aerts, M. Beta-binomial analysis of variance model for network meta-analysis of diagnostic test accuracy data. Stat Methods Med Res 2018, 27, 2554–2566.
10. Dimou, N.L.; Adam, M.; Bagos, P.G. A multivariate method for meta-analysis and comparison of diagnostic tests. Statistics in Medicine 2016, 35, 3509–3523.
11. Cheung, M.W.-L. Meta-Analysis: A Structural Equation Modeling Approach; John Wiley Sons, Ltd: Chichester, UK, 2015.
12. Cheung, M.W.-L. metaSEM: an R package for meta-analysis using structural equation modeling. Front. Psychol. 2015, 5.
13. Cheung, M.W.-L. A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods 2008, 13, 182–202.
14. Tu, Y.-K.; Wu, Y.-C. Using structural equation modeling for network meta-analysis. BMC Med Res Methodol 2017, 17, 104.
15. Shih, M.; Tu, Y. Evaluating network meta‐analysis and inconsistency using arm‐parameterized model in structural equation modeling. Res Syn Meth 2019, jrsm.1344.
16. Sackett, D.L. Evidence base of clinical diagnosis: The architecture of diagnostic research. BMJ 2002, 324, 539–541.
17. Leeflang, Mariska.M.G.; Deeks, J.J.; Gatsonis, C.; Bossuyt, P.M.M. Systematic Reviews of Diagnostic Test Accuracy. Ann Intern Med 2008, 149, 889–897.
18. Steinhauser, S.; Schumacher, M.; Rücker, G. Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Med Res Methodol 2016, 16, 97.
19. Takwoingi, Y.; Guo, B.; Riley, R.D.; Deeks, J.J. Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. Statistical Methods in Medical Research 2017, 26, 1896–1911.
20. Arends, L.R.; Hamza, T.H.; van Houwelingen, J.C.; Heijenbrok-Kal, M.H.; Hunink, M.G.M.; Stijnen, T. Bivariate Random Effects Meta-Analysis of ROC Curves. Medical Decision Making 2008, 28, 621–638.
21. Van Houwelingen, H.C.; Zwinderman, K.H.; Stijnen, T. A bivariate approach to meta-analysis. Statistics in Medicine 1993, 12, 2273–2284.
22. Harbord, R.M.; Deeks, J.J.; Egger, M.; Whiting, P.; Sterne, J.A.C. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007, 8, 239–251.
23. Bauer, D.J. Estimating Multilevel Linear Models as Structural Equation Models: Journal of Educational and Behavioral Statistics 2016.
24. Hox, J.J. Multilevel analysis: techniques and applications; Quantitative methodology series; 2. ed.; Routledge, Taylor Francis: New York, 2010.
25. Raudenbush, S.W.; Bryk, A.S. Hierarchical linear models: applications and data analysis methods; Advanced quantitative techniques in the social sciences; 2nd ed.; Sage Publications: Thousand Oaks, 2002.
26. Bagos, P.G. On the covariance of two correlated log-odds ratios. Statist. Med. 2012, 31, 1418–1431.
27. Hallquist, M.N.; Wiley, J.F. MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal 2018, 25, 621–638.
28. Morris, T.P.; White, I.R.; Crowther, M.J. Using simulation studies to evaluate statistical methods. Statistics in Medicine 2019, 38, 2074–2102.
29. Gasparini, A. rsimsum: Summarise results from Monte Carlo simulation studies. JOSS 2018, 3, 739.
30. Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38.
31. Nemes, S.; Jonasson, J.M.; Genell, A.; Steineck, G. Bias in odds ratios by logistic regression modelling and sample size. BMC Med Res Methodol 2009, 9, 56.
32. Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; 1st ed.; Wiley, 2019.
33. Bradburn, M.J.; Deeks, J.J.; Berlin, J.A.; Russell Localio, A. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statist. Med. 2007, 26, 53–77.
34. West, B.T.; Welch, K.B.; Gałecki, A.T.; Gillespie, B.W. Linear mixed models: a practical guide using statistical software; Second edition.; CRC Press, Taylor Francis Group: Boca Raton, 2015.
35. Walter, S.D. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Statist. Med. 2002, 21, 1237–1256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68139-
dc.description.abstract背景:受限於敏感性與特異度在研究之內與之間的相關性,診斷型網絡統合分析的方法較少被提出,且目前並沒有一個公認的標準模型,也沒有文獻在統一的框架下,完整地比較現今已發表的方法的不同之處,而結構方程模式是一個非常靈活的統計框架,其能夠使用潛在變量將隨機效應明確地建模,因此能夠輕易地指定敏感性和特異度之間潛在的相關性,此外,藉由路徑圖的輔助,還能直觀地比較模型之間的異同,因此,本研究之目的在於探討如何在結構方程模式的框架中,對診斷型網絡統合分析建模,並比較模型之間的異同,以及參數估計表現的差異。
方法:本研究使用結構方程模式的架構,建立四種基於臂的診斷型研究之網絡統合分析模型,其中兩種為由Trikalinos以及Dimou分別提出,有考慮到研究內相關性的方法;而另外兩種為由Hoyer和Nyaga分別提出,沒有考量這層關係的方法。我們使用路徑圖視覺化以及指定這四個模型,藉此直觀比較模型之間的差異。之後藉由模擬研究的方式,針對評估兩種診斷工具表現的情況,我們創造了九個不同的情境,其中使用八種評估指標為標準,如Bias、EmpSE、MSE以及Coverage等等,來評估這四種模型在估計診斷工具敏感性和特異度的表現。
結果:由路徑圖可以直觀地看出,Nyaga可以被視為Hoyer的簡化版,而Dimou則可理解為Hoyer的複雜版,至於Trikalinos則比Hoyer多使用了JTPR與JFPR來捕捉組內相關性。另外模擬研究的結果顯示,Trikalinos在診斷工具之間無相關的情況下,收斂率很低,除此之外,四個模型在九個情境下,參數估計的EmpSE與MSE表現並沒有相差很多,但就其他評估指標來看,有考慮到組內的相關性的Trikalinos和Dimou,在高相關或敏感性和特異度參數真值設定接近1時估計會較為不穩定,且Bias普遍較Hoyer和Nyaga高。
結論:Trikalinos或Dimou的參數估計易受到高相關以及真值設定的影響,因此,應注意真實參數的情況以及診斷工具之間的相關性為何,方能得到較精確的估計,而Hoyer或Nyaga兩個模型相差不多,且整體而言,此兩個模型的準確度會比Trikalinos或Dimou好一點。而在模型選擇的部分,除了考量上述的估計表現外,還應考慮另外三個層面,一為可用的資料型態為何;二為是否應考慮組內相關性;三為欲比較的診斷工具數目為何。
zh_TW
dc.description.abstractBackground: Because of the inherent correlation between sensitivity and specificity, evidence synthesis of diagnostic test accuracy data is more complicated than standard meta-analysis. Statistical methods for evaluating the performance of multiple diagnostic tests have emerged only recently. Currently no statistical approach has been widely considered as the standard one, so a comprehensive evaluation of the proposed approaches in the literature, including an assessment of model performance under different criteria and scenarios, would be a valuable addition to the current literature. Previous studies have shown that network meta‐analysis (NMA) can be implemented in the structural equation modeling (SEM) framework. SEM is a flexible statistical framework as random effect is explicitly modeled as a latent variable; hence the SEM-based NMA on diagnostic accuracy studies can specify the inherent correlation between sensitivity and specificity explicitly. Therefore, the aim of this study is to show how to undertake a network meta-analysis of diagnostic test within the statistical framework of SEM, and to compare several existing approaches under the unified framework.
Methods: We implemented 4 different types of NMA models on diagnostic accuracy studies into the SEM framework. Two of them are proposed by Dimou and Trikalinos, respectively, which account for potential within-studies correlations, and the other two are proposed by Hoyer and Nyaga, respectively, which do not explicitly consider these correlations. Then, the path diagram was used to specify these 4 models in order to visually compare the differences between the models.
Furthermore, we conducted a simulation study for the comparison of two diagnostic tests with the gold standard to assess the performance of the parameters estimates in these models. In total, 9 scenarios and 8 performance indices (such as bias, EmpSE, MSE, coverage, etc.) were used in the simulation to evaluate the model performance in terms of the estimation of sensitivity and specificity.
Results: It can be seen intuitively from the path diagram that Nyaga’s model is a simplified version of Hoyer, and Dimou’s model is a complex version of Hoyer’s. Besides, Trikalinos’s model is also similar to Hoyer’s but it accounts for the within-studies correlations by modeling the logit-JTPR and logit-JFPR. However, simulations suggest that Trikalinos's model often failed to converge, when the correlation between the diagnostic tests is null or low. In other situations, the indices of EmpSE and MSE of parameters estimates in each model showed similar values. However, after considering other performance measures, if the within-studies correlation is set to high or the parameters of sensitivity and specificity are close to 1, the estimators of Trikalinos and Dimou will become unstable. In general, the biases in Trikalinos’s and Dimou’s models are larger than those of Hoyer’s and Nyaga’s.
Conclusions: The parameter estimates of Trikalinos’s or Dimou’s models are susceptible to high within-study correlations and high sensitivity/specificity. On the contrary, the estimates given by Hoyer’s and Nyaga’s models are relatively stable, and results from these two models are quite consistent and almost identical. The accuracy of Hoyer’s and Nyaga’s models are better than those of Dimou and Trikalinos.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:19Z (GMT). No. of bitstreams: 1
U0001-1708202016203900.pdf: 5987242 bytes, checksum: fa70c886e8358958c1ce2b03e98beacb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄
論文口試委員審定書
摘要 i
Abstract iii
目 錄 vi
圖目錄 viii
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 診斷工具 5
2.2 診斷型研究的統合分析 9
2.3 診斷型研究的網絡統合分析 14
2.4 結構方程式應用於網絡統合分析 16
第三章 研究方法 19
3.1 SEM與統合分析 20
3.2 SEM與診斷型網絡統合分析 23
3.2.1 Trikalinos et al. [5] 23
3.2.2 Hoyer and Kuss [7] 27
3.2.3 Nyaga et al. [8] 30
3.2.4 Dimou et al. [10] 34
3.3 模擬研究 39
3.3.1 資料生成 40
3.3.2 評估指標 42
第四章 研究結果 47
4.1 Bias 48
4.2 EmpSE 53
4.3 MSE 58
4.4 Coverage 64
4.5 其它評估指標 69
第五章 討論 73
第六章 結論 81
參考文獻 83
附錄A. 程式碼 87
附錄B. Convergence 101
附錄C. B-E Cover. 103
附錄D. ModSE與EmpSE的比 105
附錄E. joyplot圖 107
dc.language.isozh-TW
dc.title利用結構方程模式進行診斷工具表現比較的統合分析zh_TW
dc.titleApplying structural equation modeling to meta-analysis of diagnostic test performance
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee簡國龍(Kuo-Liong Chien),陳錦華(Jin-Hua Chen)
dc.subject.keyword統合分析,網絡統合分析,診斷工具,結構方程模式,雙變量模型,模擬研究,zh_TW
dc.subject.keywordMeta-analysis,Network meta-analysis,Diagnostic tests,Structural equation modeling,Bivariate effects model,Simulation study,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202003792
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202016203900.pdf
  目前未授權公開取用
5.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved