請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | I-Chou Wu | en |
| dc.contributor.author | 吳益州 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:13:10Z | - |
| dc.date.available | 2021-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-12-06 | |
| dc.identifier.citation | [1] 楊松蒲, '光柵式側向耦光技術應用於高功率半導體雷射陣列之研究,' 國立臺灣大學, 碩士論文, 2015.
[2] https://en.wikipedia.org/wiki/Double-clad_fiber (June 13, 2011) [3] K. Price, S. Karlsen, and P. Leisher, R. Martinsen, 'High-brightness fiber-coupled pump laser development,' Proc. of SPIE, vol. 7583, pp. 758308, 2010. [4] D. Kouznetsov and J. V. Moloney, 'Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser,' IEEE Journal of Quantum Electronics, vol. 39, pp. 1452-1461, 2003. [5] R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tuennermann, 'Efficient side-pumping of fibre lasers using binary gold diffraction gratings,' Electronics Letters, vol. 39, pp. 276-277, 2003. [6] https://refractiveindex.info/?shelf=main&book=SiO2&page=Malitson (1965) [7] http://nanolithography.gatech.edu/training/Determining_dose_r3.pdf (August, 2010) [8] http://lnf-wiki.eecs.umich.edu/wiki/Physical_vapor_deposition#Step_coverage (February 27, 2015) [9] http://www.laogu.com/cms/xw_24806.htm (October 10, 2005) [10] P. A. Dennig and D. A. Stevenson, 'Influence of substrate topography on the nucleation of diamond thin films,' Applied Physics Letters, vol. 59, 1991. [11] A. J. Hong, C. C. Liu, Y. Wang, J. Kim, F. Xiu, S. Ji, J. Zou, P. F. Nealey, and K. L. Wang, 'Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off,' Nano Letters, vol. 10(1), pp. 224-229, 2009. [12] http://www.mrsec.harvard.edu/education/ap298r2004/Erli %20chenFabrication%20II%20-%20Deposition-1.pdf (April 12, 2004) [13] http://www.ece.umd.edu/class/enee416/ENEE416%20Physical%20 Deposition.pdf (October 13, 2011) [14] 鍾政桓, '電子束微影之低溫短顯影研究,' 國立臺灣大學, 碩士論文, 2016. [15] M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, 'Comparison between Analytical Solution and Experimental Setup of a Short Long Ytterbium Doped Fiber Laser,' Optics and Photonics Journal, vol. 2, 2012. [16] V. X. Liu, 'Technology Trend and Challenges in High Power Semiconductor Laser Packaging,' Electronic Packaging Technology, August 2007. [17] http://www.nlight.net/nlight-files/file/datasheets/CS/nLIGHT_CS-NonVisible_081001.pdf (2017) [18] http://www.nlight.net/nlight-files/file/DatasheetsV2/element/9xx/(e06_0650976105)%20e06-06-065-0976-3-105-0_22-SI-FPT-2_0-HT.pdf (2017) [19] P. Schreiber, B. Hoefer, P. Dannberg, and U. D. Zeitner, 'High-brightness fiber- coupling schemes for diode laser bars,' Optics & Photonics 2005, pp. 587602-587602-10, 2005. [20] K. Price, S. Karlsen, P. Leisher, and R. Martinsen, 'High-brightness fiber-coupled pump laser development,' Proc. SPIE 7583, High-Power Diode Laser Technology and Applications VIII, 758308, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68131 | - |
| dc.description.abstract | 於高功率雷射領域中,以半導體雷射做為光源所發展的光纖雷射漸漸地主導了此領域的走向。半導體雷射於電光轉換效率、高功率輸出及光束品質等方面均具極佳的優勢,因此於不同雷射幫浦架構中,其被作為可靠的高功率雷射光源。於本實驗室中,採用半導體雷射陣列做為光源之光柵式側向耦光系統於2011年被提出,而此側向耦光系統具兩種會導致耦光效率損耗的機制,其分別為二次繞射損耗及邊緣損耗。於稍後研究成果中,將光源為976-nm輸出波長之半導體雷射陣列耦入400-μm內纖衣尺寸光纖,且將所採用的週期性光柵之週期由680 nm替換為675 nm以有效地改善二次繞射損耗且達到67.63%實驗耦光效率。
於本論文中,我們將著手改善邊緣損耗所造成之影響。我們同樣採用675-nm週期光柵及400-μm內纖衣尺寸光纖,接著利用基因演算法以設計出具顯著±1st階不對等繞射光效率的非對稱性光柵結構以取代週期性光柵之兩端結構而形成非週期性光柵。透過電子束微影製程的參數測試及改良後,我們成功地製作出具40-nm寬極細結構之非對稱性光柵結構,接著採用二次對準技術將非對稱性光柵結構成功地與週期性光柵做整合以製作出非週期性光柵。透過非週期性光柵與週期性光柵之實驗耦光效率分析及比較,由基因演算法所設計之非對稱性光柵結構可有效地改善邊緣損耗且將實驗耦光效率再往上提升至75%,其為目前光柵式側向耦光技術所能達到之最高耦光效率。 | zh_TW |
| dc.description.abstract | In high power laser field, the fiber laser with adopting diode-pumped laser as light source gradually dominates this field. The adoption of diode-pumped laser as a reliable high-power laser light source in various configuration of pumped laser is due to the high electrical-optical conversion efficiency, high output power, and excellent beam quality. In 2011, we demonstrated the grating based side-coupling scheme with using laser diode array (LDA) as light source and there were two loss mechanisms, secondary diffraction loss and edge loss, decreasing the coupling efficiency. In the later research, the secondary diffraction loss could be effectively improved and the 67.63% coupling efficiency was achieved by coupling 976-nm LDA into 400-μm double cladding fiber and substituting periodic grating with 675-nm period for that with 680-nm period.
In this study, we start to improve the edge loss. At first, we choose the same grating based side-coupling scheme and we adopt grating with 675-nm period and 400-μm double cladding fiber to prevent the side-coupling scheme from being influenced by secondary diffraction loss. Next, we adopt Genetic Algorithm to design the asymmetric grating structure with significant ±1st order asymmetric diffraction efficiency used to replace the structures at the two edges of periodic grating to form aperiodic grating. Through a series of experimental parameters test and improvement of E-beam lithography process, we successfully fabricate asymmetric grating structure with 40-nm thin structure integrated with periodic grating by secondary alignment to form aperiodic grating. After comparing the experimental coupling efficiency of aperiodic grating and periodic grating, the adoption of asymmetric grating structure designed by Genetic Algorithm could effectively improve the edge loss and make the coupling efficiency of aperiodic gating be up to 75% which is the highest coupling efficiency for side-coupling technology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:13:10Z (GMT). No. of bitstreams: 1 ntu-106-R04941016-1.pdf: 5270694 bytes, checksum: ec88045f88d7340e9d5923b7e48d2b4a (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝..........................................................i
中文摘要....................................................iii Abstract.....................................................iv 圖目錄........................................................3 表目錄........................................................7 第一章 緒論與研究動機.........................................8 第二章 光柵式側向耦光系統技術................................10 2.1 光柵式側向耦光與端面耦光技術之比較.......................10 2.2 光柵式側向耦光系統之架構.................................14 2.3 半導體雷射陣列之特性.....................................16 2.4 側向耦光之瓶頸...........................................20 2.4.1 二次繞射損耗之影響.....................................20 2.4.2 邊緣損耗之影響.........................................23 第三章 側向耦光瓶頸之改善....................................25 3.1 二次繞射損耗之改善.......................................25 3.2 非對稱性光柵結構設計改善邊緣損耗.........................26 3.3 採用不同尺寸內纖衣光纖對損耗之影響與改善.................34 第四章 電子束微影製程製作之耦光光柵..........................46 4.1 976-nm LDA之週期性光柵製作...............................46 4.2 976-nm LDA之非週期性光柵製作.............................50 4.2.1 非對稱性光柵製作.......................................50 4.2.2 對稱性光柵製作.........................................64 第五章 側向耦光系統實驗......................................72 5.1 一公分陣列之耦光理論比較.................................72 5.2 一公分陣列之耦光實驗比較.................................77 第六章 結論與未來展望........................................88 6.1 結論.....................................................88 6.2 未來展望.................................................88 參考文獻.....................................................94 附錄A:第零階繞射光正向反射回半導體雷射陣列光源而對光源造成之影響...........................................................96 附錄B:於Matlab中撰寫程式碼以利用基因演算法設計非對稱性光柵結構 .............................................................98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 電子束微影製程 | zh_TW |
| dc.subject | 光柵式側向耦光系統 | zh_TW |
| dc.subject | 半導體雷射陣列 | zh_TW |
| dc.subject | 高功率雷射 | zh_TW |
| dc.subject | high-power laser | en |
| dc.subject | laser diode array | en |
| dc.subject | grating based side-coupling scheme | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | E-beam lithography process | en |
| dc.title | 以基因演算法設計之奈米光柵應用於高功率半導體雷射陣列耦光之研究 | zh_TW |
| dc.title | Efficient LDA Coupling to Fiber using Genetic Algorithm Designed Nano-grating | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管傑雄(Chieh-Hsiung Kuan),李穎玟(Yin-Wen Lee),黃定洧(Ding-Wei Huang) | |
| dc.subject.keyword | 高功率雷射,半導體雷射陣列,光柵式側向耦光系統,基因演算法,電子束微影製程, | zh_TW |
| dc.subject.keyword | high-power laser,laser diode array,grating based side-coupling scheme,Genetic Algorithm,E-beam lithography process, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU201704439 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-12-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
