Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君
dc.contributor.authorYun-Shiuan Lien
dc.contributor.author李昀軒zh_TW
dc.date.accessioned2021-06-17T02:13:02Z-
dc.date.available2021-03-01
dc.date.copyright2018-03-01
dc.date.issued2017
dc.date.submitted2017-12-11
dc.identifier.citation[1] T. D. Burd and R. W. Brodersen, 'Energy efficient CMOS microprocessor design,' in System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International Conference on, 1995, pp. 288-297.
[2] A. Pavlov and M. Sachdev, CMOS SRAM circuit design and parametric test in nano-scaled technologies: process-aware SRAM design and test vol. 40: Springer Science & Business Media, 2008.
[3] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl, 'The impact of intrinsic device fluctuations on CMOS SRAM cell stability,' IEEE Journal of Solid-State Circuits, vol. 36, pp. 658-665, 2001.
[4] D. X. Yang, A. E. Gamal, B. Fowler, and H. Tian, 'A 640× 512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC,' IEEE Journal of Solid-State Circuits, vol. 34, pp. 1821-1834, 1999.
[5] A. El Gamal, 'Trends in CMOS image sensor technology and design,' in Electron Devices Meeting, 2002. IEDM'02. International, 2002, pp. 805-808.
[6] M. K. Law, A. Bermak, and H. C. Luong, 'A sub-μmW embedded CMOS temperature sensor for RFID food monitoring application,' IEEE Journal of Solid-State Circuits, vol. 45, pp. 1246-1255, 2010.
[7] E. N. Ho and P. K. Mok, 'A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, pp. 80-84, 2010.
[8] R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, 'Complementary metal oxide semiconductor technology with and on paper,' Advanced Materials, vol. 23, pp. 4491-4496, 2011.
[9] W. E. Bowen, W. Wang, and J. D. Phillips, 'Complementary thin-film electronics based on n-channel ZnO and p-channel ZnTe,' IEEE Electron Device Letters, vol. 30, pp. 1314-1316, 2009.
[10] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, 'Control of carrier density by self-assembled monolayers in organic field-effect transistors,' Nature materials, vol. 3, pp. 317-322, 2004.
[11] K. Nomura, T. Kamiya, and H. Hosono, 'Ambipolar oxide thin‐film transistor,' Advanced Materials, vol. 23, pp. 3431-3434, 2011.
[12] L. Yan Liang, H. Tao Cao, X. Bo Chen, Z. Min Liu, F. Zhuge, H. Luo, J. Li, Y. Cheng Lu, and W. Lu, 'Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities,' Applied Physics Letters, vol. 100, pp. 263502-1-3, 2012.
[13] J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, 'Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,' Thin Solid Films, vol. 520, pp. 1679-1693, 2012.
[14] H. Hosono, '68.3: Invited Paper: Transparent Amorphous Oxide Semiconductors for High Performance TFT,' in SID symposium digest of technical papers, 2007, pp. 1830-1833.
[15] E. Fortunato, P. Barquinha, and R. Martins, 'Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances,' Advanced Materials, vol. 24, pp. 2945-2986, 2012.
[16] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, 'Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production,' Proceedings of the IEEE, vol. 93, pp. 1500-1510, 2005.
[17] A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, and A. Dyadyusha, 'Flexible electronics: the next ubiquitous platform,' Proceedings of the IEEE, vol. 100, pp. 1486-1517, 2012.
[18] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,' Nature, vol. 432, pp. 488-492, 2004.
[19] Y. Sun and J. A. Rogers, 'Inorganic semiconductors for flexible electronics,' Advanced Materials, vol. 19, pp. 1897-1916, 2007.
[20] J. Lewis, 'Material challenge for flexible organic devices,' Materials today, vol. 9, pp. 38-45, 2006.
[21] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, 'A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 9966-9970, 2004.
[22] I. Manunza, A. Sulis, and A. Bonfiglio, 'Pressure sensing by flexible, organic, field effect transistors,' Applied Physics Letters, vol. 89, pp. 143502-1-3, 2006.
[23] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, '25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress,' Advanced Materials, vol. 25, pp. 5997-6038, 2013.
[24] V. Lumelsky, M. S. Shur, and S. Wagner, Sensitive skin vol. 18: World Scientific, 2000.
[25] J. J. Boland, 'Flexible electronics: Within touch of artificial skin,' Nature materials, vol. 9, pp. 790-792, 2010.
[26] T. Yang, D. Xie, Z. Li, and H. Zhu, 'Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance,' Materials Science and Engineering: R: Reports, vol. 115, pp. 1-37, 2017.
[27] R. S. Dahiya, G. Metta, M. Valle, A. Adami, and L. Lorenzelli, 'Piezoelectric oxide semiconductor field effect transistor touch sensing devices,' Applied Physics Letters, vol. 95, pp. 034105-1-3, 2009.
[28] R. Dahiya, A. Adami, C. Collini, and L. Lorenzelli, 'POSFET tactile sensing arrays using CMOS technology,' Sensors and Actuators A: Physical, vol. 202, pp. 226-232, 2013.
[29] L. Maiolo, A. Pecora, F. Maita, A. Minotti, E. Zampetti, S. Pantalei, A. Macagnano, A. Bearzotti, D. Ricci, and G. Fortunato, 'Flexible sensing systems based on polysilicon thin film transistors technology,' Sensors and Actuators B: Chemical, vol. 179, pp. 114-124, 2013.
[30] R. Hayashi, A. Sato, M. Ofuji, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, and M. Hirano, '42.1: Invited Paper: Improved Amorphous In‐Ga‐Zn‐O TFTs,' in SID Symposium Digest of Technical Papers, 2008, pp. 621-624.
[31] G. J. Lee, J. Kim, J.-H. Kim, S. M. Jeong, J. E. Jang, and J. Jeong, 'High performance, transparent a-IGZO TFTs on a flexible thin glass substrate,' Semiconductor Science and Technology, vol. 29, pp. 035003-1-5, 2014.
[32] T. Kamiya, K. Nomura, and H. Hosono, 'Present status of amorphous In–Ga–Zn–O thin-film transistors,' Science and Technology of Advanced Materials, pp.1-23, 2016.
[33] J. K. Jeong, 'The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays,' Semiconductor Science and Technology, vol. 26, pp. 034008-1-3, 2011.
[34] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, 'p-channel thin-film transistor using p-type oxide semiconductor, SnO,' Applied Physics Letters, vol. 93, pp. 032113-1-3, 2008.
[35] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.-H. K. Park, C.-S. Hwang, and R. Martins, 'Transparent p-type SnO x thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing,' Applied Physics Letters, vol. 97, pp. 052105-1-3, 2010.
[36] H.-N. Lee, H.-J. Kim, and C.-K. Kim, 'P-channel tin monoxide thin film transistor fabricated by vacuum thermal evaporation,' Japanese Journal of Applied Physics, vol. 49, pp. 020202-1-3, 2010.
[37] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, 'Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits,' Appl. Phys. Lett, vol. 97, pp. 072111-1-3, 2010.
[38] P.-C. Hsu, W.-C. Chen, Y.-T. Tsai, Y.-C. Kung, C.-H. Chang, C.-J. Hsu, C.-C. Wu, and H.-H. Hsieh, 'Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes,' Japanese Journal of Applied Physics, vol. 52, pp. 05DC07-1-6, 2013.
[39] J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U. Schwingenschlögl, and H. N. Alshareef, 'Record mobility in transparent p-type tin monoxide films and devices by phase engineering,' ACS nano, vol. 7, pp. 5160-5167, 2013.
[40] I.-C. Chiu and I.-C. Cheng, 'Gate-bias stress stability of p-type SnO thin-film transistors fabricated by RF-sputtering,' IEEE Electron Device Letters, vol. 35, pp. 90-92, 2014.
[41] Y.-J. Han, Y.-J. Choi, I.-T. Cho, S. H. Jin, J.-H. Lee, and H.-I. Kwon, 'Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer,' IEEE Electron Device Letters, vol. 35, pp. 1260-1262, 2014.
[42] Y.-J. Han, Y.-J. Choi, C.-Y. Jeong, D. Lee, S.-H. Song, and H.-I. Kwon, 'Environment-dependent bias stress stability of p-type SnO thin-film transistors,' IEEE Electron Device Letters, vol. 36, pp. 466-468, 2015.
[43] Z. Wang, P. K. Nayak, J. A. Caraveo‐Frescas, and H. N. Alshareef, 'Recent Developments in p‐Type Oxide Semiconductor Materials and Devices,' Advanced Materials, vol. 28, pp. 3831-3892, 2016.
[44] I.-C. Chiu, Y.-S. Li, M.-S. Tu, and I.-C. Cheng, 'Complementary oxide–semiconductor-based circuits with n-channel ZnO and p-channel SnO thin-film transistors,' IEEE Electron Device Letters, vol. 35, pp. 1263-1265, 2014.
[45] Dhananjay, C.-W. Chu, C.-W. Ou, M.-C. Wu, Z.-Y. Ho, K.-C. Ho, and S.-W. Lee, 'Complementary inverter circuits based on p-SnO2 and n-In2O 3 thin film transistors,' Applied Physics Letters, vol. 92, pp. 232103-1-3, 2008.
[46] J. Kim, C. Fuentes-Hernandez, S.-J. Kim, S. Choi, and B. Kippelen, 'Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors,' Organic Electronics, vol. 11, pp. 1074-1078, 2010.
[47] J. Kim, C. Fuentes-Hernandez, D. Hwang, W. Potscavage, H. Cheun, and B. Kippelen, 'Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates,' Organic Electronics, vol. 12, pp. 45-50, 2011.
[48] K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi, T. Hasegawa, M. Kimura, T. Kawase, M. Hirano, and H. Hosono, 'Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors,' Applied Physics Letters, vol. 96, pp. 263509-1-3, 2010.
[49] C. H. Park, H. S. Lee, K. H. Lee, D.-H. Kim, H.-R. Kim, G.-H. Lee, J. H. Kim, and S. Im, 'Organic/oxide hybrid complementary thin-film transistor inverter in vertical stack for logic, photo-gating, and ferroelectric memory operation,' Organic Electronics, vol. 12, pp. 1533-1538, 2011.
[50] A. Dindar, J. Kim, C. Fuentes-Hernandez, and B. Kippelen, 'Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates,' Applied Physics Letters, vol. 99, pp. 172104-1-3, 2011.
[51] A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, 'First-principles calculations of native defects in tin monoxide,' Physical Review B, vol. 74, pp. 195128-1-8, 2006.
[52] N. Quackenbush, J. Allen, D. Scanlon, S. Sallis, J. Hewlett, A. Nandur, B. Chen, K. Smith, C. Weiland, and D. Fischer, 'Origin of the bipolar doping behavior of SnO from X-ray spectroscopy and density functional theory,' Chemistry of Materials, vol. 25, pp. 3114-3123, 2013.
[53] H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, 'Bipolar conduction in SnO thin films,' Electrochemical and Solid-State Letters, vol. 14, pp. H13-H16, 2011.
[54] J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, C.-W. Lee, and H.-I. Kwon, 'Temperature-dependent electrical instability of p-type SnO thin-film transistors,' Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 34, pp. 041210-1-6, 2016.
[55] J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, D.-K. Jung, S. Ham, and H.-I. Kwon, 'Electrical Instability of p-Channel SnO Thin-Film Transistors Under Light Illumination,' IEEE Electron Device Letters, vol. 37, pp. 295-298, 2016.
[56] C.-W. Zhong, H.-C. Lin, J.-R. Tsai, K.-C. Liu, and T.-Y. Huang, 'Impact of gate dielectrics and oxygen annealing on tin-oxide thin-film transistors,' Japanese Journal of Applied Physics, vol. 55, pp. 04EG02-1-6, 2016.
[57] J. Zhang, X. Kong, J. Yang, Y. Li, J. Wilson, J. Liu, Q. Xin, Q. Wang, and A. Song, 'Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics,' Applied Physics Letters, vol. 108, pp. 263503-1-4, 2016.
[58] C.-Y. Jeong, D. Lee, Y.-J. Han, Y.-J. Choi, and H.-I. Kwon, 'Subgap states in p-channel tin monoxide thin-film transistors from temperature-dependent field-effect characteristics,' Semiconductor Science and Technology, vol. 30, pp. 085004-1-6, 2015.
[59] H.-J. Kim, C.-Y. Jeong, S.-D. Bae, J.-H. Lee, and H.-I. Kwon, 'Charge Transport Mechanism in p-Channel Tin Monoxide Thin-Film Transistors,' IEEE Electron Device Letters, vol. 38, pp. 473-476, 2017.
[60] C.-W. Ou, Dhananjay, Z. Y. Ho, Y.-C. Chuang, S.-S. Cheng, M.-C. Wu, K.-C. Ho, and C.-W. Chu, 'Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits,' Applied Physics Letters, vol. 92, pp. 122113-1-3, 2008.
[61] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, 'Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits,' Applied Physics Letters, vol. 97, pp. 072111-1-3, 2010.
[62] L. Y. Liang, Z. M. Liu, H. T. Cao, Z. Yu, Y. Y. Shi, A. H. Chen, H. Z. Zhang, Y. Q. Fang, and X. L. Sun, 'Phase and optical characterizations of annealed SnO thin films and their p-type TFT application,' Journal of The Electrochemical Society, vol. 157, pp. H598-H602, 2010.
[63] K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, 'Solution-processed oxide semiconductor SnO in p-channel thin-film transistors,' Journal of Materials Chemistry, vol. 22, pp. 4607-4610, 2012.
[64] J. Caraveo-Frescas and H. N. Alshareef, 'Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors,' Applied Physics Letters, vol. 103, pp. 222103-1-3, 2013.
[65] Y.-S. Li, J.-C. He, S.-M. Hsu, C.-C. Lee, D.-Y. Su, F.-Y. Tsai, and I.-C. Cheng, 'Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors,' IEEE Electron Device Letters, vol. 37, pp. 46-49, 2016.
[66] S. H. Kim, I.-H. Baek, D. H. Kim, J. J. Pyeon, T.-M. Chung, S.-H. Baek, J.-S. Kim, J. H. Han, and S. K. Kim, 'Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films,' Journal of Materials Chemistry C, vol. 5, pp. 3139-3145, 2017.
[67] P.-C. Chen, Y.-C. Chiu, G.-L. Liou, Z.-W. Zheng, C.-H. Cheng, and Y.-H. Wu, 'Performance Enhancements in p-Type Al-Doped Tin-Oxide Thin Film Transistors by Using Fluorine Plasma Treatment,' IEEE Electron Device Letters, vol. 38, pp. 210-212, 2017.
[68] P.-C. Chen, Y.-C. Chiu, Z.-W. Zheng, C.-H. Cheng, and Y.-H. Wu, 'Influence of plasma fluorination on p-type channel tin-oxide thin film transistors,' Journal of Alloys and Compounds, vol. 707, pp. 162-166, 2017.
[69] P.-C. Chen, Y.-C. Chiu, Z.-W. Zheng, M.-H. Lin, C.-H. Cheng, G.-L. Liou, H.-H. Hsu, and H.-l. Kao, 'Fast Low-Temperature Plasma Process for the Application of Flexible Tin-Oxide-Channel Thin Film Transistors,' IEEE Transactions on Nanotechnology, 2017.
[70] J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, and A. Song, 'High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors,' Materials, vol. 10, p. 319, 2017.
[71] P. K. Nayak, J. Caraveo-Frescas, Z. Wang, M. N. Hedhili, Q. Wang, and H. N. Alshareef, 'Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer,' Scientific reports, vol. 4, 2014.
[72] Z. Wang, H. A. Al-Jawhari, P. K. Nayak, J. Caraveo-Frescas, N. Wei, M. N. Hedhili, and H. N. Alshareef, 'Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer,' Scientific reports, vol. 5, pp. 9617-1-6, 2015.
[73] H. Yin, S. Kim, C. J. Kim, J. C. Park, I. Song, S.-W. Kim, S.-H. Lee, and Y. Park, 'Bootstrapped ring oscillator with propagation delay time below 1.0 nsec/stage by standard 0.5µm bottom-gate amorphous Ga2O3-In2O3-ZnO TFT technology,' in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[74] M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, 'Fast thin-film transistor circuits based on amorphous oxide semiconductor,' IEEE Electron Device Letters, vol. 28, pp. 273-275, 2007.
[75] D. Geng, D. H. Kang, and J. Jang, 'High-performance amorphous indium–gallium–zinc–oxide thin-film transistor with a self-aligned etch stopper patterned by back-side UV exposure,' IEEE Electron Device Letters, vol. 32, pp. 758-760, 2011.
[76] D. H. Kang, I. Kang, S. H. Ryu, and J. Jang, 'Self-aligned coplanar a-IGZO TFTs and application to high-speed circuits,' IEEE Electron Device Letters, vol. 32, pp. 1385-1387, 2011.
[77] J. Sun, D. A. Mourey, D. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. Cowdery-Corvan, L. Tutt, and T. N. Jackson, 'ZnO thin-film transistor ring oscillators with 31-ns propagation delay,' IEEE Electron Device Letters, vol. 29, pp. 721-723, 2008.
[78] A. Suresh, P. Wellenius, V. Baliga, H. Luo, L. M. Lunardi, and J. F. Muth, 'Fast all-transparent integrated circuits based on indium gallium zinc oxide thin-film transistors,' IEEE Electron Device Letters, vol. 31, pp. 317-319, 2010.
[79] X. Li, D. Geng, M. Mativenga, and J. Jang, 'High-speed dual-gate a-IGZO TFT-based circuits with top-gate offset structure,' IEEE Electron Device Letters, vol. 35, pp. 461-463, 2014.
[80] B. Bayraktaroglu, K. Leedy, and R. Neidhard, 'High-frequency ZnO thin-film transistors on Si substrates,' IEEE Electron Device Letters, vol. 30, pp. 946-948, 2009.
[81] D. Zhao, D. A. Mourey, and T. N. Jackson, 'Fast flexible plastic substrate ZnO circuits,' IEEE Electron Device Letters, vol. 31, pp. 323-325, 2010.
[82] M. Mativenga, M. H. Choi, J. W. Choi, and J. Jang, 'Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors,' IEEE Electron Device Letters, vol. 32, pp. 170-172, 2011.
[83] K. J. Saji and A. R. Mary, 'Tin Oxide Based P and N-Type Thin Film Transistors Developed by RF Sputtering,' ECS Journal of Solid State Science and Technology, vol. 4, pp. Q101-Q104, 2015.
[84] P.-C. Chen, Y.-H. Wu, Z.-W. Zheng, Y.-C. Chiu, C.-H. Cheng, S.-S. Yen, H.-H. Hsu, and C.-Y. Chang, 'Bipolar Conduction in Tin-Oxide Semiconductor Channel Treated by Oxygen Plasma for Low-Power Thin-Film Transistor Application,' Journal of Display Technology, vol. 12, pp. 224-227, 2016.
[85] R. Presley, C. Munsee, C. Park, D. Hong, J. Wager, and D. Keszler, 'Tin oxide transparent thin-film transistors,' Journal of Physics D: Applied Physics, vol. 37, pp. 2810-1-5, 2004.
[86] D.-H. Lee, Y.-J. Chang, W. Stickle, and C.-H. Chang, 'Functional porous tin oxide thin films fabricated by inkjet printing process,' Electrochemical and Solid-State Letters, vol. 10, pp. K51-K54, 2007.
[87] W.-S. Cheong, S.-M. Yoon, C.-S. Hwang, and H. Y. Chu, 'High-mobility transparent SnO2 and ZnO–SnO2 thin-film transistors with SiO2/Al2O3 gate insulators,' Japanese Journal of Applied Physics, vol. 48, pp. 04C090-1-4, 2009.
[88] J. Sun, A. Lu, L. Wang, Y. Hu, and Q. Wan, 'High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature,' Nanotechnology, vol. 20, pp. 335204-1-5, 2009.
[89] J. Jang, R. Kitsomboonloha, S. L. Swisher, E. S. Park, H. Kang, and V. Subramanian, 'Transparent High‐Performance Thin Film Transistors from Solution‐Processed SnO2/ZrO2 Gel‐like Precursors,' Advanced Materials, vol. 25, pp. 1042-1047, 2013.
[90] G. Huang, L. Duan, G. Dong, D. Zhang, and Y. Qiu, 'High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode,' ACS applied materials & interfaces, vol. 6, pp. 20786-20794, 2014.
[91] J. Zhai, X. a. Zhang, F. Hai, X. Yu, R. Zhu, and W. Zhang, 'Fabrication and characterization of thin-film transistors with SnO2 channel by spray pyrolysis,' Japanese Journal of Applied Physics, vol. 53, pp. 066506-1-3, 2014.
[92] J. Yang, Z. Yang, T. Meng, Y. Han, X. Wang, and Q. Zhang, 'Effects of silicon doping on the performance of tin oxide thin film transistors,' physica status solidi (a), vol. 213, pp. 1010-1015, 2016.
[93] K.-W. Jo, S.-W. Moon, and W.-J. Cho, 'Fabrication of high-performance ultra-thin-body SnO2 thin-film transistors using microwave-irradiation post-deposition annealing,' Applied Physics Letters, vol. 106, pp. 043501-1-4, 2015.
[94] H.-C. Chu, Y.-S. Shen, C.-H. Hsieh, J.-H. Huang, and Y.-H. Wu, 'Low-voltage operation of ZrO2-gated n-type thin-film transistors based on a channel formed by hybrid phases of SnO and SnO2,' ACS applied materials & interfaces, vol. 7, pp. 15129-15137, 2015.
[95] X. Zhang, J. Zhai, X. Yu, R. Zhu, and W. Zhang, 'Effect of Annealing Temperature on the Performance of SnO2 Thin Film Transistors Prepared by Spray Pyrolysis,' Journal of nanoscience and nanotechnology, vol. 15, pp. 6183-6187, 2015.
[96] D. Lim, Y. Jeon, M. Kim, Y. Kim, and S. Kim, 'Electrical Characteristics of SnO2 Thin-Film Transistors Fabricated on Bendable Substrates Using Reactive Magnetron Sputtering,' Journal of nanoscience and nanotechnology, vol. 16, pp. 11697-11700, 2016.
[97] X. Liu, H. Ning, J. Chen, W. Cai, S. Hu, R. Tao, Y. Zeng, Z. Zheng, R. Yao, and M. Xu, 'High-performance back-channel-etched thin-film transistors with amorphous Si-incorporated SnO2 active layer,' Applied Physics Letters, vol. 108, pp. 112106-1-5, 2016.
[98] J. Song, J. H. Lim, B. Ahn, and J. Lee, '10.3: Invited Paper: High Mobility Oxide TFTs for Future LCD Applications,' in SID Symposium Digest of Technical Papers, 2013, pp. 93-96.
[99] D. Priyadarshini, R. Mannam, M. R. Rao, and N. DasGupta, 'Effect of annealing ambient on SnO 2 thin film transistors,' Applied Surface Science, vol. 418, pp. 414-417, 2017.
[100] H. Ning, X. Liu, H. Zhang, Z. Fang, W. Cai, J. Chen, R. Yao, M. Xu, L. Wang, and L. Lan, 'Effect of Intrinsic Stress on Structural and Optical Properties of Amorphous Si-Doped SnO2 Thin-Film,' Materials, vol. 10, pp. 24-1-8, 2017.
[101] J. Sirohi and I. Chopra, 'Fundamental understanding of piezoelectric strain sensors,' Journal of Intelligent Material Systems and Structures, vol. 11, pp. 246-257, 2000.
[102] E. Fukada, 'History and recent progress in piezoelectric polymers,' IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, pp. 1277-1290, 2000.
[103] A. Jain, P. KJ, A. K. Sharma, and A. Jain, 'Dielectric and piezoelectric properties of PVDF/PZT composites: A review,' Polymer Engineering & Science, vol. 55, pp. 1589-1616, 2015.
[104] P. Ueberschlag, 'PVDF piezoelectric polymer,' Sensor Review, vol. 21, pp. 118-126, 2001.
[105] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, 'Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator,' Nano Letters, vol. 9, pp. 1201-1205, 2009.
[106] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, 'Self-powered nanowire devices,' Nature nanotechnology, vol. 5, pp. 366-373, 2010.
[107] G. Zhu, R. Yang, S. Wang, and Z. L. Wang, 'Flexible high-output nanogenerator based on lateral ZnO nanowire array,' Nano letters, vol. 10, pp. 3151-3155, 2010.
[108] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, 'Self-powered system with wireless data transmission,' Nano letters, vol. 11, pp. 2572-2577, 2011.
[109] K. Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J. I. Sohn, S. N. Cha, D. Choi, Z. L. Wang, and S.-W. Kim, 'P-type polymer-hybridized high-performance piezoelectric nanogenerators,' Nano letters, vol. 12, pp. 1959-1964, 2012.
[110] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, 'Functional electrical stimulation by nanogenerator with 58 V output voltage,' Nano letters, vol. 12, pp. 3086-3090, 2012.
[111] Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, 'Replacing a battery by a nanogenerator with 20 V output,' Advanced Materials, vol. 24, pp. 110-114, 2012.
[112] S.-H. Shin, M. H. Lee, J.-Y. Jung, J. H. Seol, and J. Nah, 'Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO–ZnO p–n junction formation,' Journal of Materials Chemistry C, vol. 1, pp. 8103-8107, 2013.
[113] J. I. Sohn, S. N. Cha, B. G. Song, S. Lee, S. M. Kim, J. Ku, H. J. Kim, Y. J. Park, B. L. Choi, and Z. L. Wang, 'Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation,' Energy & Environmental Science, vol. 6, pp. 97-104, 2013.
[114] S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z. H. Lin, G. Ardila, L. Montès, M. Mouis, and Z. L. Wang, 'Ultrathin Nanogenerators as Self‐Powered/Active Skin Sensors for Tracking Eye Ball Motion,' Advanced Functional Materials, vol. 24, pp. 1163-1168, 2014.
[115] X. Li, Y.-H. Wang, C. Zhao, and X. Liu, 'Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires,' ACS applied materials & interfaces, vol. 6, pp. 22004-22012, 2014.
[116] E. Lee, J. Park, M. Yim, S. Jeong, and G. Yoon, 'High-efficiency micro-energy generation based on free-carrier-modulated ZnO: N piezoelectric thin films,' Applied Physics Letters, vol. 104, pp. 213908-1-5, 2014.
[117] K. Y. Lee, J. Bae, S. Kim, J.-H. Lee, G. C. Yoon, M. K. Gupta, S. Kim, H. Kim, J. Park, and S.-W. Kim, 'Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators,' Nano Energy, vol. 8, pp. 165-173, 2014.
[118] E. Lee, J. Park, M. Yim, Y. Kim, and G. Yoon, 'Characteristics of piezoelectric ZnO/AlN− stacked flexible nanogenerators for energy harvesting applications,' Applied Physics Letters, vol. 106, pp. 023901-1-5, 2015.
[119] M. Laurenti, S. Stassi, M. Lorenzoni, M. Fontana, G. Canavese, V. Cauda, and C. Pirri, 'Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films,' Nanotechnology, vol. 26, pp. 215704-1-9, 2015.
[120] W. Deng, L. Jin, B. Zhang, Y. Chen, L. Mao, H. Zhang, and W. Yang, 'A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin,' Nanoscale, vol. 8, pp. 16302-16306, 2016.
[121] W. Deng, B. Zhang, L. Jin, Y. Chen, W. Chu, H. Zhang, M. Zhu, and W. Yang, 'Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator,' Nanotechnology, vol. 28, pp. 135401-1-3, 2017.
[122] K.-S. Cho, D.-H. Kim, Y.-H. Kim, J. Nah, and H.-K. Kim, 'Li-doped Cu2O/ZnO heterojunction for flexible and semi-transparent piezoelectric nanogenerators,' Ceramics International, vol. 43, pp. 2279-2287, 2017.
[123] G. Maiellaro, E. Ragonese, A. Castorina, S. Jacob, M. Benwadih, R. Coppard, E. Cantatore, and G. Palmisano, 'High-gain operational transconductance amplifiers in a printed complementary organic TFT technology on flexible foil,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 3117-3125, 2013.
[124] Y.-C. Tarn, P.-C. Ku, H.-H. Hsieh, and L.-H. Lu, 'An amorphous-silicon operational amplifier and its application to a 4-bit digital-to-analog converter,' IEEE Journal of Solid-State Circuits, vol. 45, pp. 1028-1035, 2010.
[125] C. Zysset, N. Munzenrieder, T. Kinkeldei, K. Cherenack, and G. Troster, 'Indium-gallium-zinc-oxide based mechanically flexible transimpedance amplifier,' Electronics letters, vol. 47, pp. 691-692, 2011.
[126] Y.-H. Tai, H.-L. Chiu, L.-S. Chou, and C.-H. Chang, 'Boosted gain of the differential amplifier using the second gate of the dual-gate a-IGZO TFTs,' IEEE Electron Device Letters, vol. 33, pp. 1729-1731, 2012.
[127] C. Zysset, N. Münzenrieder, L. Petti, L. Büthe, G. A. Salvatore, and G. Tröster, 'IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm,' IEEE Electron Device Letters, vol. 34, pp. 1394-1396, 2013.
[128] K. Ishida, R. Shabanpour, B. K. Boroujeni, T. Meister, C. Carta, F. Ellinger, L. Petti, N. S. Münzenrieder, G. A. Salvatore, and G. Tröster, '22.5 dB open-loop gain, 31 kHz GBW pseudo-CMOS based operational amplifier with a-IGZO TFTs on a flexible film,' in Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian, 2014, pp. 313-316.
[129] T. Yokota, T. Sekitani, T. Tokuhara, N. Take, U. Zschieschang, H. Klauk, K. Takimiya, T.-C. Huang, M. Takamiya, and T. Sakurai, 'Sheet-type flexible organic active matrix amplifier system using pseudo-CMOS circuits with floating-gate structure,' IEEE Transactions on Electron Devices, vol. 59, pp. 3434-3441, 2012.
[130] T.-C. Huang, K. Fukuda, C.-M. Lo, Y.-H. Yeh, T. Sekitani, T. Someya, and K.-T. Cheng, 'Pseudo-CMOS: A design style for low-cost and robust flexible electronics,' IEEE Transactions on Electron Devices, vol. 58, pp. 141-150, 2011.
[131] F. Maita, L. Maiolo, A. Minotti, A. Pecora, D. Ricci, G. Metta, G. Scandurra, G. Giusi, C. Ciofi, and G. Fortunato, 'Ultraflexible Tactile Piezoelectric Sensor Based on Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technology,' IEEE Sensors Journal, vol. 15, pp. 3819-3826, 2015.
[132] T. T. Dao, 'Organic complementary amplifier circuits with mixed dielectrics for large-area active collision detection sensors,' in IC Design and Technology (ICICDT), 2016 International Conference on, 2016, pp. 1-4.
[133] M. Ghosh, Polyimides: fundamentals and applications: CRC Press, 1996.
[134] W. A. MacDonald, M. Looney, D. MacKerron, R. Eveson, R. Adam, K. Hashimoto, and K. Rakos, 'Latest advances in substrates for flexible electronics,' Journal of the Society for Information Display, vol. 15, pp. 1075-1083, 2007.
[135] K. C. S. Adel S. Sedra Microelectronic Circuits (Oxford Series in Electrical & Computer Engineering) 6th Edition
[136] https://en.wikipedia.org/wiki/High-pass_filter.
[137] T.-H. Wu, J.-Z. Chen, C.-C. Hsu, and I.-C. Cheng, 'Electromechanical properties of MgZnO/ZnO heterostructures on flexible polyimide and stainless steel substrates under flexing,' Journal of Physics D: Applied Physics, vol. 47, pp. 255102-1-8, 2014.
[138] W.-L. Huang, 'Flexible N-Type SnOx Thin-Film Transistors Fabricated via ZrO2 Capping Layer Assisted Oxidation Effect,' Master Thesis, 2017.
[139] I.-C. Chiu, 'P-type Tin Monoxide Thin-Film Transistors and Their Application in Complementary Metal-Oxide-Semiconductor (CMOS) Circuits, 'Master Thesis, 2014.
[140] X.-Y. Li, H.-J. Li, Z.-J. Wang, H. Xia, Z.-Y. Xiong, J.-X. Wang, and B.-C. Yang, 'Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering,' Optics Communications, vol. 282, pp. 247-252, 2009.
[141] R.-J. Baker, CMOS Circuit Design, Layout, and Simulation.
[142] T.-F. Schuber, E.-M. Kim, Fundamentals of Electronics: Book 4: Oscillators and Advanced Electronics Topics.
[143] J. Crowe, H.-G. Barrie, Introduction to Digital Electronics.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68123-
dc.description.abstract本研究於可撓性聚醯亞胺塑膠基板上開發全氧化物薄膜電晶體互補式反向器及電路。首先以氧化鋅搭配氧化亞錫薄膜電晶體製作互補式反向器及震盪器電路,電晶體採用下閘極反向堆疊結構,並以低溫磁控濺鍍法製備通道層。所製備的可撓性互補反向器其P型電晶體與N形電晶體的元件通道幾何比為5,在供給電壓為12伏特時具有電壓增益12。接著探討在受彎曲應力下的元件電性表現,在施以張應力時觀察到薄膜電晶體與互補式反向器的電性表現劣化,而壓應力對於其電性表現沒有明顯的影響。
我們進一步運用單一通道層沉積技術來製備氧化錫與氧化亞錫薄膜電晶體互補式反向器。於N形電晶體區域選擇性覆蓋一層氧化鋯薄膜來提供氧原子,以在低製程溫度下實現N形電特性。研究中發現,背通道覆蓋氧化鋯薄膜的電晶體隨退火時間的增加其電性表現由P形轉為N形。所獲得的錫氧化物互補反向器於玻璃基板及聚醯亞胺塑膠基板上在供給電壓10伏特時,電壓增益值為13,在施以張應力時可觀察到薄膜互補式反向器的電性表現劣化。
由於氧化錫與氧化亞錫薄膜電晶體互補式反向器的電壓轉換點較小,我們運用氧化鋅與氧化亞錫薄膜電晶體互補式反向器搭配回授電阻來製備薄膜放大器作為壓電感測器的訊號放大。聚偏二氟乙烯(PVDF)壓電感測薄膜以及氧化鋅壓電感測薄膜分別以導線外接到放大器來提升訊號的強度。薄膜放大器於玻璃基板上可有效提升10倍輸出訊號量值。薄膜放大器於可撓性聚醯亞胺塑膠基板上可有效提升6倍輸出訊號量值。但經過放大後的訊雜比無提升,原因可能來自外接線路的雜訊以及外接過程中訊號的衰減。
最後,我們開發觸覺感測面來確認壓電薄膜與薄膜放大器一體整合之可行性。觸覺感測面包含四個獨立的感測區域,每個區域由一壓電薄膜與一個薄膜放大器所組成。當採用聚偏二氟乙烯(PVDF)壓電薄膜時,可成功放大電壓訊號達11倍,此時訊雜比為32分貝。而以氧化鋅壓電薄膜與薄膜放大器一體整合之觸覺感測面,其電壓訊號放大為10倍,訊雜比則提升至66分貝。採用氧化鋅壓電薄膜的觸覺感測面也製作於可撓性聚醯亞胺塑膠基板上,具有與在玻璃基板上的感測面有類似的增益和訊雜比,結果顯示此觸覺感測面能成功的偵測觸壓事件。
zh_TW
dc.description.abstractIn this research, flexible complimentary metal-oxide-semiconductor (CMOS) inverters and circuits based on oxide thin-film transistors (TFTs) are developed. At first, CMOS inverters composed of n-channel zinc oxide (ZnO) and p-channel tin monoxide (SnO) TFTs are demonstrated on polyimide foil substrates. The inverted-staggered bottom-gated TFTs are fabricated by a low-temperature rf-sputtering technique. The static voltage gain of a flexible oxide-TFT-based CMOS inverter with a geometric aspect ratio of 5 is ~12 at a supplied voltage (VDD) of 12 V. The electrical performances of devices under various mechanical strain levels are investigated. Degradations of TFTs and inverters are observed when mechanical tensile strains are applied, whereas the influence of compressive strain is negligible.
We further demonstrate complementary oxide-TFT-based inverters with p-channel SnO and n-channel SnOx TFTs via the single-step deposition of the active layer technique. The modulation of charge carrier polarity is realized by selective deposition of a capping layer on top of the n-channel active layer as an oxygen source. Evolution of transfer characteristics from p-type character to n-type character with the increase of annealing time for the n-channel SnOx TFT with the ZrO2 capping layer is observed. The optimal annealing time is 60 min, where the achieved static voltage gain is 13 at VDD of 10 V for both on-glass and on-PI inverters. A similar degradation is observed when the on-PI SnOx-based complementary inverter is subjected to mechanical tensile strains.
Due to the low switching threshold voltage of the SnOx-based complementary TFT inverter, a thin-film amplifier for piezoelectric sensor films is constructed using a complementary inverter composed of SnO and ZnO TFTs with a feedback resistor to ensure a high gain. The amplifier is used to increase the signal level and robustness of the polyvinylidene difluoride (PVDF) and ZnO piezoelectric sensor films. The on-glass amplifier can enlarge the output voltage level by a factor of 10, while the gain of the on-PI amplifier is around 6 V/V. Signal-to-noise ratios (SNRs) do not increase as the amplifier is used, which implies external wiring causes signal loss and introduces noises.
A tactile sensing surface is fabricated on a glass substrate to demonstrate the integration feasibility of the piezoelectric sensor films with the readout amplifiers. The tactile sensing surface contains 4 individual sensing areas, and each area is made of a piezoelectric sensor film and a readout amplifier. The sensing surface with PVDF piezoelectric sensors exhibits an enhancement of signal level by a factor of 11 and a SNR of 32 dB. The sensing surface with ZnO piezoelectric sensors exhibits an enhancement of signal level by a factor of 10 V/V and a SNR of 66 dB. The tactile sensing surface is further demonstrated on a flexible substrate with comparable level of gain and SNR. The resulting tactile sensing surface ensures successful detection of touch events.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:02Z (GMT). No. of bitstreams: 1
ntu-106-D01941004-1.pdf: 16113853 bytes, checksum: e3fb4a5af30e89b4080086f340be538d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試審定書………………………………………………………………………………………..ii
致謝…………………………………………………………………………………………………..iii
中文摘要……………………………………………………………………………………………iv
ABSTRACT………………………………………………………………………..…….….…..vi
LIST OF TABLES……………………………………………………………………..….…ix
LIST OF FIGURES……………………………………………………………………….….xi
CHAPTER 1 INTRODUCTION 1
1.1 CMOS Inverters………………………………………………………….1
1.2 Transparent Oxide Semiconductors………………………………………2
1.3 Flexible Electronics……………………………………………..…………3
1.4 Tactile Sensing System………………………………………………….5
1.5 Research Motivation……………………………………………..…….......7
1.6 Dissertation Organization………………………………………………….9
CHAPTER 2 REVIEW OF CMOS TFT INVERTERS AND CIRCUITS 11
2.1 Complementary Inverters with Oxide Thin-Film Transistors…………..11
2.2 Flexible Inverter Circuits with Oxide Thin-Film Transistors…………..24
2.3 Complementary TFT Inverters via Single-Step Depositon of Active Layer28
2.4 Piezoelectric Sensor Films………………………………………………34
2.5 Amplifier Circuits with TFTs…………………………………………......36
CHAPTER 3 PROCCESS OF CMOS TFT INVERTERS AND AMPLIFIER CIRSUITS 53
3.1 Process of Complementary Inverters with Oxide Thin-Film Transistors….53
3.2 Process of Inverters via Single-Step Deposition of Active Layer…………62
3.3 Theory and Design of Amplifier Circuits with CMOS Inverters…………68
3.4 Process of Amplifier Circuits with CMOS Inverters………………………73
3.5 Process of Tactile Sensing Surfaces……………………………………….81
3.6 Characterization Methods………………………………………………….90


CHAPTER 4 RESULTS AND DISCUSSION 93
4.1 Characteristics of Thin-FilmTransistors………...…………………………93
4.2 Characteristics of Complementary TFT Inverters………………………..114
4.3 Characteristics of Piezoelectric Sensor Films……………………………131
4.4 Characteristics of Amplifiers……………………………………………..133
4.5 Characteristics of Tactile Sensing Surfaces………………………………142
CHAPTER 5 CONCLUSIONS AND PERSPECTIVES 149
5.1 Conclusions………………………………………………………………149
5.2 Future Perspectives………………………………………………………151
REFERENCES………………………………………………………………….….…..………..…153
APPENDICES………………………………………..…………………..166
1. Inverters with P-Channel SnO TFT and N-Channel SnOx TFT via SiO2 and
Al2O3 Capping Layers…………………………………………….………….166
2. Flexible Five-Stage Complementary Oxide-TFT-Based Ring Oscillator...169
PUBLICATIONS……………………………………………………………….………………..…175
dc.language.isoen
dc.subject壓電感測薄膜zh_TW
dc.subject薄膜電晶體zh_TW
dc.subject薄膜放大器電路zh_TW
dc.subjectThin-Film Transistoren
dc.subjectThin-Film Amplifier Circuiten
dc.subjectPiezoelectric Sensor Filmen
dc.title可撓性互補式氧化物電晶體反向器應用於壓電觸覺感測介面放大電路之研究zh_TW
dc.titleFlexible Complementary Inverters with Oxide Thin-Film Transistors and Applications to Amplifier Circuits for Piezoelectric Tactile Sensing Surfaceen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳建彰,蔡豐羽,李敏鴻,吳志毅,許聿翔
dc.subject.keyword薄膜電晶體,薄膜放大器電路,壓電感測薄膜,zh_TW
dc.subject.keywordThin-Film Transistor,Thin-Film Amplifier Circuit,Piezoelectric Sensor Film,en
dc.relation.page177
dc.identifier.doi10.6342/NTU201704450
dc.rights.note有償授權
dc.date.accepted2017-12-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
15.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved