Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鐘金(Chung-Chin Kuo)
dc.contributor.authorYu-Shian Chenen
dc.contributor.author陳昱憲zh_TW
dc.date.accessioned2021-06-17T02:12:50Z-
dc.date.available2021-03-29
dc.date.copyright2018-03-29
dc.date.issued2017
dc.date.submitted2017-12-18
dc.identifier.citation參考文獻
Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP. (2016). A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. J Neurosci 36, 2617-2622.
Ascher P. (1990). Measuring and controlling the extracellular glycine concentration at the NMDA receptor level. In Excitatory Amino Acids and Neuronal Plasticity, pp. 13-16. Springer.
Benveniste M, Clements J, Vyklický L, Mayer M. (1990). A kinetic analysis of the modulation of N‐methyl‐D‐aspartic acid receptors by glycine in mouse cultured hippocampal neurones. The Journal of Physiology 428, 333-357.
Boulter J, Hollman M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1038.
Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Gunther W, Seeburg PH, Sakmann B. (1992). Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257, 1415-1419.
Berger AJ, Dieudonné S and Ascher P. (1998). Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. Journal of neurophysiology 80, 3336-3340.
Bergeron R, Meyer TM, Coyle JT and Greene RW. (1998). Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proceedings of the National Academy of Sciences 95, 15730-15734.
Blanke ML and VanDongen AM. (2008). 13 Activation Mechanisms of the NMDA Receptor. Biology of the NMDA Receptor, 283.
Clements J and Westbrook G. (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605-613.
Catterall WA. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25.
Chang HR, Kuo CC. (2008). The activation gate and gating mechanism of the NMDA receptor. J Neurosci 28, 1546-1556.
Furukawa H, Singh SK, Mancusso R, Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438, 185-192.
Ghasemi M, Schachter SC. (2011). The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy and Behavior 22, 617-640.
Guo H, Camargo LM, Yeboah F, Digan ME, Niu H, Pan Y, Reiling S, Soler-Llavina G, Weihofen WA, Wang HR, Shanker YG, Stams T, Bill A. (2017). A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci Rep 7, 11608.
Hell JW and Ehlers MD. (2008). Structural and functional organization of the synapse. Springer Science and Business Media.
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y. (2010). Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiological reviews 90, 291-366.
Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. (2017). NMDA Receptors in the Central Nervous System. In NMDA Receptors, pp. 1-80. Springer.
Howes O, McCutcheon R, Stone J. (2015). Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of psychopharmacology 29, 97-115.
Hu B, Zheng F. (2005). Molecular determinants of glycine-independent desensitization of NR1/NR2A receptors. Journal of Pharmacology and Experimental Therapeutics 313, 563-569.
Huggins DJ, Grant GH. (2005). The function of the amino terminal domain in NMDA receptor modulation. Journal of Molecular Graphics and Modelling 23, 381-388.
Jarolimek W, Soman K, Alam M, Brown A. (1995). The selectivity of different external binding sites for quaternary ammonium ions in cloned potassium channels. Pflügers Archiv European Journal of Physiology 430, 672-681.
Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B. (1996). Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343-352.
Kleckner NW and Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835.
Krupp JJ, Vissel B, Heinemann SF, Westbrook GL. (1998). N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317-327.
Kussius CL and Popescu GK. (2010). NMDA receptors with locked glutamate-binding clefts open with high efficacy. Journal of Neuroscience 30, 12474-12479.
Karakas E, Furukawa H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992-997.
Lenaeus MJ, Burdette D, Wagner T, Focia PJ, Gross A. (2014). Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Biochemistry 53, 5365-5373.
Li V, Wang YT. (2016). Molecular mechanisms of NMDA receptor-mediated excitotoxicity: implications for neuroprotective therapeutics for stroke. Neural regeneration research 11, 1752.
Marcus Y. (2008). Tetraalkylammonium Ions in Aqueous and Non-aqueous Solutions. Journal of Solution Chemistry 37, 1071-1098.
Matsuda S, Kamiya Y, Yuzaki M. (2005). Roles of the N-terminal domain on the function and quaternary structure of the ionotropic glutamate receptor. Journal of Biological Chemistry 280, 20021-20029.
Mayer ML, Armstrong N. (2004). Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66, 161-181.
Mayer ML, Vyklicky L, Clements J. (1989). Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425-427.
McBain C, Kleckner N, Wyrick S, Dingledine R. (1989). Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Molecular pharmacology 36, 556-565.
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221.
Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-37.
Paoletti P, Perin-Dureau F, Fayyazuddin A, Le Goff A, Callebaut I, Neyton J. (2000). Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911-925.
Sessoms-Sikes S, Honse Y, Lovinger DM, Colbran RJ. (2005). CaMKIIα enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Molecular and Cellular Neuroscience 29, 139-147.
Sobolevskii A, Khodorov B. (2002). Blocker studies of the functional architecture of the NMDA receptor channel. Neuroscience and behavioral physiology 32, 157-171.
Sobolevsky AI. (2000). Quantitative analysis of tetrapentylammonium-induced blockade of open N-methyl-D-aspartate channels. Biophysical journal 79, 1324-1335.
Sobolevsky AI, Koshelev SG, Khodorov BI. (1999). Probing of NMDA channels with fast blockers. Journal of Neuroscience 19, 10611-10626.

Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH. (1992). A glutamate receptor channel with high affinity for domoate and kainate. The EMBO Journal 11, 1651.
Stone TW. (1995). CNS neurotransmitters and neuromodulators: glutamate. CRC Press.
Tavalin SJ, Colbran RJ. (2017). CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner. Molecular and Cellular Neuroscience 79, 45-52.
Traynelis SF, Hartley M, Heinemann SF. (1995). Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873.
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62, 405-496.
Tu YC, Kuo CC. (2015). The differential contribution of GluN1 and GluN2 to the gating operation of the NMDA receptor channel. Pflugers Arch 467, 1899-1917.
Tu YC, Yang YC, Kuo CC. (2016). Modulation of NMDA channel gating by Ca2+ and Cd2+ binding to the external pore mouth. Sci Rep 6, 37029.
Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, Porath K, Sellmann T, Bien CG, Köhling R. (2016). Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain research 1633, 10-18.
Wolosker H, Dumin E, Balan L, Foltyn VN. (2008). D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275, 3514-3526.
Zhang HX, Hyrc K, Thio LL. (2009). The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J Physiol 587, 3207-3220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68112-
dc.description.abstractNMDA離子通道分別是由兩個GluN1和GluN2所組成,兩個不同的次單元間有著不同的角色與功能。在正常的生理功能下,NMDA離子通道屬於非選擇性陽離子通道,能夠讓突觸後神經細胞興奮且傳遞重要訊息,且與神經的可塑性和記憶學習息息相關。NMDA離子通道的去敏感化現象在正常生理情況下有重要的地位,因為當通透鈣離子進入細胞後若沒有產生去敏感化現象,將會有更大量的鈣離子進入細胞,而鈣離子在細胞質中扮演著訊息傳遞物質,大量的鈣離子濃度將會造成細胞錯誤的訊息傳遞。然而去敏感化現象的成因,尤其是GluN1和GluN2在其中切確的調控機轉至今仍然不是很清楚。因此我們試著透過tetraalkylammonium (TAA)不同側鏈長度的碳來探究activation gate和dsensitization gate之間的相對位置。我們發現tetrapentylammonium chloride(TpentA)能夠與關閉和開啟的NMDA離子通道作用,而且具有門閥修飾作用,能夠將NMDA離子通道維持在開啟態。換句話說就是TpentA的大小與結合位置剛好可以讓dsensitization gate無法關閉,讓NMDA離子通道無法待在去敏感化狀態。而且經過不同側鏈長度的TAA離子,我們推測dsensitization gate在activation gate的相當位置或更偏外面且可能位在洞口附近,另外我們透過TpentA的結合以及改變不同濃度的ligands發現,NMDA離子通道在開啟狀態和去敏感化狀態之間有著高度的耦合關係。在GluN1未活化或僅稍活化時,GluN2在接合NMDA之後通道就會短暫打開,但卻一下子就會關閉。只是此種關閉並非去敏感化現象,通道仍可隨時被NMDA+glycine所再次打開,因此GluN1對GluN2的門閥管制較有空間,亦即去敏感化現象需要GluN1和GluN2皆已活化之協同合作下才會出現。整體而言,GluN2可能直接負責通道的閘門開關,而GluN1卻對GluN2的活動扮演著重要角色。zh_TW
dc.description.abstractDesensitization of NMDA receptor channel an obligatory heterotetramer formed by two GluN1 and two GluN2 subunits may play an important in neurophysiology and pathophysiology.However, the molecular mechanism of desensitization, especially the exact role of GluN1 and GluN2 subunits,are still unclear.We explored the relative position of the activation gate and the desensitization gate with tetraalkylammonium (TAA) ions of different side-chain lengths.We found that external tetrapentylammonium (TpentA) is a pore blocker.It binds to both closed and open NMDA channel with the same affinity,but precludes channel desensitization.In other words, TpentA makes the dsensitization gate unable to close,but leaves the activation gate relatively untouched.The dsensitization gate therefore is located outside the activation gate in the bundle crossing region at the external pore mouth.In addition,we found that NMDA channel have a high desensitization is hightly coupled to the activation of both GluN1 and GluN2 subunits.When the GluNl subunit is not activated or only slightly activated,activation of GluN2 subunit by NMDA binding would open the channel for a short period of time followed by channel closure.There closed channels are not desensitized,and could still be opened again by the presence of both activating ligands NMDA and glycine.We conclude that desensitization requires the cooperative GluN1 and GluN2 subunits.GluN2 subunit may be directly responsible for the gate itself,while GluN1 subunit may assume a control on GluN2 movement.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:50Z (GMT). No. of bitstreams: 1
ntu-106-R04441011-1.pdf: 3035364 bytes, checksum: 5a406e0110193bbe2916bcabe1cf7c37 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vi
導論 1
材料與方法 8
結果 10
討論 19
參考文獻 54
dc.language.isozh-TW
dc.titleNMDA離子通道去敏感化閘門之位置及其運作機制zh_TW
dc.titleThe location and operation of NMDA receptor channel desensitization gateen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅晴(Ya-Chin Yang),蔡明正(Ming-Ching Tsai)
dc.subject.keywordN-甲基-D-天門冬胺酸受體,去敏感化閘門,zh_TW
dc.subject.keywordNMDA,desensitization gate,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201704459
dc.rights.note有償授權
dc.date.accepted2017-12-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved