Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林修葳(Hsiou-Wei Lin)
dc.contributor.authorKendro Vincenten
dc.contributor.author羅秉政zh_TW
dc.date.accessioned2021-06-17T02:12:47Z-
dc.date.available2020-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-19
dc.identifier.citationAcharya, V. V. and Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77:375–410.
Amenc, N., Ducoulombier, F., Goltz, F., Lodh, A., and Sivasubramanian, S. (2016). Diversified or concentrated factor tilts? Journal of Portfolio Management, 42:264–276.
Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5:31–56.
Anderson, C. W. and Garcia-Feijòo, L. (2006). Empirical evidence on capital investment, growth options, and security returns. Journal of Finance, 61:171–194.
Ang, A., Hodrick, R. J., Xing, Y., and Zhang, X. (2006). The cross-section of volatility and expected returns. Journal of Finance, 61:259–299.
Arnott, R. D., Hsu, J., Kalesnik, V., and Tindall, P. (2013). The surprising alpha from malkiel's monkey and upside-down strategies. Journal of Portfolio Management, 39:91–105.
Asness, C. S., Moskowitz, T. J., and Pedersen, L. H. (2013). Value and momentum everywhere. Journal of Finance, 68:929–985.
Asness, C. S., Porter, R. B., and Stevens, R. L. (2000). Predicting stock returns using industry-relative firm characteristics. Working paper.
Authers, J. (2015). Why multi-factor funds are smarter beta. Financial Times, May 13, 2015. http://on.ft.com/1e0F6wa. (Accessed March 21, 2016).
Bailey, D. H. and de Prado, M. L. (2014). The deflated sharpe ratio: Correcting for selection bias, backtest overfitting, and non-normality. Journal of Portfolio Management, 40:94–107.
Bajgrowicz, P. and Scaillet, O. (2012). Technical trading revisited: False discoveries, persistence tests, and transaction costs. Journal of Financial Economics, 106:473–491.
Bali, T. G. and Cakici, N. (2008). Idiosyncratic volatility and the cross section of expected returns. Journal of Financial and Quantitative Analysis, 43:29–58.
Bali, T. G., Cakici, N., and Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross-section of expected returns. Journal of Financial Economics, 99:427–446.
Ball, R. (1978). Anomalies in relationships between securities’ yields and yield surrogates. Journal of Financial Economics, 6:103–126.
Ball, R., Gerakos, J., Linnainmaa, J. T., and Nikolaev, V. V. (2015). Deflating profitability. Journal of Financial Economics, 117:225–248.
Bandyopadhyay, S. P., Huang, A. G., and Wirjanto, T. S. (2010). The accrual volatility anomaly. Working paper.
Banz, R. W. (1981). The relationship between return and market value of common stocks. Journal of Financial Economics, 9:3–18.
Barbee, W. C., Mukherji, S., and Raines, G. (1996). Do sales-price and debt-equity explain stock returns better than book-market and firm size. Financial Analysts Journal, 52:56– 60.
Barber, R. F. and Ramdas, A. (2018). The p-filter: Multilayer false discovery rate control for grouped hypotheses. Journal of the Royal Statistical Society, Serie B, forthcoming.
Barras, L., Scaillet, O., and Wermers, R. (2010). False discoveries in mutual fund performance: Measuring luck in estimated alphas. Journal of Finance, 65:179–216.
Basu, S. (1983). The relationship between earnings yield, market value, and return for nyse common stocks: Further evidence. Journal of Financial Economics, 12:129–156.
Beaver, W., McNichols, M., and Price, R. (2007). Delisting returns and their effect on accounting-based market anomalies. Journal of Accounting and Economics, 43:341– 368.
Belo, F. and Lin, X. (2011). The inventory growth spread. Review of Financial Studies, 25:278–313.
Belo, F., Lin, X., and Bazdresch, S. (2014). Labor hiring, investment, and stock return predictability in the cross section. Journal of Political Economy, 122:129–177.
Benjamini, Y. and Bogomolov, M. (2014). Selective inference on multiple families of hypotheses. Journal of the Royal Statistical Statistical Society, Series B, 76:297–318.
Bhandari, L. C. (1988). Debt/equity ratio and expected common stock returns: Empirical evidence. Journal of Finance, 43:507–528.
Brown, D. P. and Rowe, B. (2007). The productivity premium in equity returns. Working paper.
Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance, 52:57–82.
Chandrashekar, S. and Rao, R. K. S. (2009). The productivity of corporate cash holdings and the cross-section of expected stock returns. Working paper.
Chordia, T., Subrahmanyam, A., and Anshuman, V. R. (2001). Trading activity and ex- pected stock returns. Journal of Financial Economics, 59:3–32.
Chordia, T., Subrahmanyam, A., and Tong, Q. (2014). Have capital market anomalies attenuated in the recent era of high liquidity and trading activity? Journal of Accounting and Economics, 58:41–58.
Cochrane, J. H. (2011). Presidential address: Discount rates. Journal of Finance, 66:1047–1108.
Conrad, J., Cooper, M., and Kaul, G. (2003). Value versus glamour. Journal of Finance, 58:1969–1995.
Cooper, M. J., Gulen, H., and Schill, M. J. (2008). Asset growth and the cross-section of stock returns. Journal of Finance, 63:1609–1651.
Daniel, K. and Titman, S. (2006). Market reactions to tangible and intangible information. Journal of Finance, 61:1605–1643.
DeBondt, W. F. M. and Thaler, R. (1985). Does the stock market overreact? Journal of Finance, 40:557–581.
Delattre, S. and Roquain, E. (2015). New procedures controlling the false discovery proportion via Romano-Wolf's heuristic. Annals of Statistics, 43:1141–1177.
Desai, H., Rajgopal, S., and Venkatachalam, M. (2004). Value-glamour and accruals mispricing: One anomaly or two. The Accounting Review, 79:355–385.
Efron, B. (2008). Simultaneous inference: When should hypotheses testing problems be combined? Annals of Applied Statistics, 2:197–223.
Eisfeldt, A. L. and Papanikolaou, D. (2013). Organization capital and the cross-section of expected returns. Journal of Finance, 68:1365–1406.
Fairfield, P. M., Whisenant, J. S., and Yohn, T. L. (2003). Accrued earnings and growth: Implications for future profitability and market mispricing. The Accounting Review, 78:353–371.
Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns. Journal of Finance, 47:427–465.
Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33:3–56.
Fama, E. F. and French, K. R. (2008). Dissecting anomalies. Journal of Finance, 63:1653-–1678.
Fama, E. F. and French, K. R. (2010). Luck versus skill in the cross-section of mutual fund returns. Journal of Finance, 65:1915–1947.
Fama, E. F. and French, K. R. (2016). Dissecting anomalies with a five-factor model. Review of Financial Studies, 29:69–103.
Fama, E. F. and MacBeth, J. (1973). Risk, return and equilibrium: Empirical tests. Journal of Political Economy, 81:607–636.
George, T. J. and Hwang, C.-Y. (2004). The 52-week high and momentum investing. Journal of Finance, 59:2145–2176.
Gettleman, E. and Marks, J. M. (2006). Acceleration strategies. Working paper.
Goyenko, R. Y., Holden, C. W., and Trzcinka, C. A. (2009). Do liquidity measures measure liquidity? Journal of Financial Economics, 92:153–181.
Green, J., Hand, J. R. M., and Zhang, F. X. (2017). The characteristics that provide independent information about average u.s. monthly stock returns. Review of Financial Studies, forthcoming.
Greenblatt, J. (2010). The Little Book That Still Beats the Market. John Wiley & Sons, New Jersey.
Hafzalla, N., Lundholm, R., and Van Winkle, E. M. (2011). Percent accruals. The Accounting Review, 86:209–236.
Hahn, J. and Lee, H. (2009). Financial constraints, debt capacity and the cross-section of stock returns. Journal of Finance, 64:891–921.
Han, Y., Yang, K., and Zhou, G. (2013). A new anomaly: The cross-sectional profitability of technical analysis. Journal of Financial and Quantitative Analysis, 43:1433–1461.
Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics, 23:365–380.
Harvey, C. R. (2017). The scientific outlook in financial economics. Working paper.
Harvey, C. R. and Liu, Y. (2014). Evaluating trading strategies. Journal of Portfolio Management, 40:108–118.
Harvey, C. R., Liu, Y., and Zhu, H. (2016). ... and the cross-section of expected returns. Review of Financial Studies, forthcoming.
Heller, R., Manduchi, E., Grant, G. R., and Ewens, W. J. (2009). A flexible two-stage procedure for identifying gene sets that are differentially expressed. Bioinformatics, 25:1019–1025.
Hou, K. and Moskowitz, T. J. (2005). Market frictions, price delay, and the cross-section of expected returns. Review of Financial Studies, 18:981–1020.
Hou, K. and Robinson, D. T. (2006). Industry concentration and average stock returns. Journal of Finance, 61:1927–-1956.
Hou, K., Xue, C., and Zhang, L. (2015). Digesting anomalies: An investment approach. Review of Financial Studies, 28:650–705.
Hou, K., Xue, C., and Zhang, L. (2017). Replicating anomalies. Working paper.
Hsu, J., Kalesnik, V., and Viswanathan, V. (2015). A framework for assessing factors and implementing smart beta strategies. Journal of Index Investing, 6:89–97.
Hsu, P.-H., Hsu, Y.-C., and Kuan, C.-M. (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17:471–484.
Hsu, Y.-C., Kuan, C.-M., and Yen, M.-F. (2014). A generalized stepwise procedure with improved power for multiple inequalities testing. Journal of Financial Econometrics, 12:730–755.
Hu, J. X., Zhao, H., and Zhou, H. H. (2010). False discovery rate control with groups. Journal of the American Statistical Association, 105:1215–1227.
Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. Journal of Finance, 45:881–898.
Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance, 48:65–91.
Kahn, R. N. and Lemmon, M. (2016). The asset manager's dilemma: How smart beta is disrupting the investment management industry. Financial Analysts Journal, 72:15–20.
Keloharju, M., Linnainmaa, J. T., and Nyberg, P. (2016). Return seasonalities. Journal of Finance, 71:1557–1589.
Ledoit, O. and Wolf, M. (2008). Robust performance hypothesis testing with the sharpe ratio. Journal of Empirical Finance, 15:850–859.
Lev, B. and Thiagarajan, S. R. (1993). Fundamental information analysis. Journal of Accounting Research, 31:190–215.
Lewellen, J. (2015). The cross-section of expected stock returns. Critical Finance Review, 4:1–44.
Linnainmaa, J. T. and Roberts, M. (2016). The history of the cross section of stock returns. Working paper.
Liu, L. X., Whited, T. M., and Zhang, L. (2009). Investment-based expected stock returns. Journal of Political Economy, 117:1105–1139.
Liu, W. (2006). A liquidity-augmented capital asset pricing model. Journal of Financial Economics, 82:631–671.
Loughran, T. and Wellman, J. W. (2011). New evidence on the relation between the enterprise multiple and average stock returns. Journal of Financial and Quantitative Analysis, 46:1629–1650.
Malkiel, B. G. (2014). Is smart beta really smart? Journal of Portfolio Management, 40:127–134.
McLean, R. D. and Pontiff, J. (2016). Does academic research destroy stock return predictability? Journal of Finance, 71:5–32.
McQueen, G. and Thorley, S. (1999). Mining fool's gold. Financial Analysts Journal, 55:61–72.
Moskowitz, T. J. and Grinblatt, M. (1998). Do industries explain momentum? Journal of Finance, 54:1249–1290.
Noblett, J. (2015). Smart beta's potential starting to overwhelm ETF providers. Financial Times, December 20, 2015. http://on.ft.com/1QTyw9Y. (Accessed March 21, 2016).
Novy-Marx, R. (2012). Is momentum really momentum? Journal of Financial Eco- nomics, 103:429–453.
Novy-Marx, R. (2013). The other side of value: The gross profitability premium. Journal of Financial Economics, 108:1–28.
Novy-Marx, R. (2016). Testing strategies based on multiple signals. Working paper.
Ou, J. A. and Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11:295–329.
Palazzo, B. (2012). Cash holdings, risk, and expected returns. Journal of Financial Economics, 104:162–185.
Pastor, L. and Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111:642–685.
Peterson, C. B., Bogomolov, M., Benjamini, Y., and Sabatti, C. (2016). Many phenotypes without many false discoveries: Error controlling strategies for multitrait association studies. Genetic Epidemiology, 40:45–56.
Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89:1303–1313.
Richardson, S. A., Sloan, R. G., Soliman, M. T., and Tuna, I. (2005). Accrual reliability, earnings persistence, and stock prices. Journal of Accounting and Economics, 39:437– 485.
Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73:1237–1282.
Sloan, R. G. (1996). Do stock prices fully reflect information in accruals and cash flows about future earnings? The Accounting Review, 71:289–315.
Soliman, M. T. (2004). Using industry-adjusted DuPont analysis to predict future profitability. Working paper.
Soliman, M. T. (2008). The use of DuPont analysis by market participants. The Accounting Review, 83:823–853.
Stambaugh, R. F. and Yu, Y. (2017). Mispricing factors. Review of Financial Studies, 30:1270–1315.
Stattman, D. (1980). Book values and stock returns. The Chicago MBA: A Journal of Selected Papers, 4:25–45.
Sullivan, R., Timmernmann, A., and White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. Journal of Finance, 54:1647–1691.
Thomas, J. K. and Zhang, H. (2002). Inventory changes and future returns. Review of Accounting Studies, 7:163–187.
Titman, S., Wei, J. K. C., and Xie, F. (2004). Capital investments and stock returns. Journal of Financial and Quantitative Analysis, 39:677–700.
White, H. (2000). A reality check for data snooping. Econometrica, 68:1097–1126.
Wigglesworth, R. (2016). Fund managers ready for smart beta wars. Financial Times, February 8, 2016. http://on.ft.com/1SDFAub. (Accessed March 21, 2016).
Yan, X. and Zheng, L. (2017). Fundamental analysis and the cross-section of stock returns: A data-mining approach. Review of Financial Studies, forthcoming.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68109-
dc.description.abstract本論文使用多重檢定方法探討實證金融文獻裡的股市異常報酬現象。為了尋找可獲得異常報酬之選股策略,投資領域專家已不斷的檢定許多模型。若使用傳統假設檢定方法,所發現的優異選股策略可能為統計推論上偏誤所造成。在第一章,我們探討多因子投資策略是否真的提供投資人附加價值。由於投資人可使用不同排列組合建構多因子投資策略,我們必須使用多重檢定方法測試該選股策略之有效性。第二章探索股市橫斷面報酬率是否存在異常現象。該章節討論當我們可以針對異常現象進行分類時,是否影響多重檢定結果。zh_TW
dc.description.abstractThis dissertation joins the vibrant debate in the empirical finance literature about the cross-sectional stock return anomalies. The endless effort by the finance community to find profitable stock-picking rules has raised questions of data-snooping bias in the empirical findings. The two main chapters of this dissertation investigate the cross-section of stock returns with multiple testing method to eliminate the data-snooping bias concern. The first one examines the efficiency of multi-factor investment strategies prevalent in the equity ETF market. The second one explores the relevance of group information in testing the stock market anomalies.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:47Z (GMT). No. of bitstreams: 1
ntu-106-D01724008-1.pdf: 2645656 bytes, checksum: fda5f81315456bf19cee89d12e464c3d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsList of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Analyzing the Performance of Multi-Factor Investment Strategies under Multiple Testing Framework. . . . . . 3
2.1 Error Control in Multiple Testing . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . 4
2.2 Measuring Portfolio Performance . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . 7
2.3 Data and Portfolio Construction . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . 8
2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Do Cross-Sectional Stock Return Predictors Pass the Test without Data-Snooping Bias?. . . . . . . . . . . . 24
3.1 Multiple Testing Methodology . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Pooled multiple testing with FWER(k) control . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 28
3.1.2 Grouped multiple testing with average FWER over the selected families . . . . . . . . . . . . . . . . . 29
3.2 Data and Portfolio Construction . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 31
3.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Pooled vs grouped multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Analysis with risk-adjusted returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 38
3.3.3 Anomalies in the period of increased liquidity . . . . . . .. . . . . . . . . . . . . . . . . . .. . . 41
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 43
3.5 Definition of Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A Step-SPA(k) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
dc.language.isoen
dc.title多重檢定與股票報酬率橫斷面分析zh_TW
dc.titleMultiple Testing and the Cross-Section of Stock Returnsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.coadvisor許育進(Yu-Chin Hsu)
dc.contributor.oralexamcommittee陳宜廷(Yi-Ting Chen),江彌修(Mi-Hsiu Chiang),黃瑞卿(Ruey-Ching Hwang)
dc.subject.keyword股票報酬率橫斷面分析,資料竊探偏誤,市場效率,多因子投資,多重檢定,智能選股,股市異常報酬,zh_TW
dc.subject.keywordcross-section of stock returns,data-snooping bias,market efficiency,multi-factor investing,multiple testing,smart beta,stock market anomalies.,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201704469
dc.rights.note有償授權
dc.date.accepted2017-12-19
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved