Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲(Chin-Chou Chu)
dc.contributor.authorYung-Sheng Linen
dc.contributor.author林詠盛zh_TW
dc.date.accessioned2021-06-17T02:12:26Z-
dc.date.available2021-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-27
dc.identifier.citation[1] Alexander, R. (1982). Locomotion of animals. New York: Chapman & Hall, Blackie.
[2] Anderson, J. M., Streitlien, K., Barrett, D. S., & Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency. J. Fluid Mech., 360, 41-72.
[3] Bainbridge, R. (1958). The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol., 35(1), pp. 109-133.
[4] Bandyopadhyay, P.R. (2005). Trends in biorobotic autonomous undersea vehicles. IEEE J. Oce. Eng., 30(1), pp. 109-139.
[5] Buchholz, J. H. J. and Smits, A. J. (2008). The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech., 603, 331-365.
[6] Chang, C. C., Su, J. Y., & Lei, S. Y. (1998). On aerodynamic forces for viscous compressible flow. Theor. Comput. Fluid Dyn., 10(1), 71-90.
[7] Chang, C.-C. (1992). Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A Math. Phy. Eng. Sci. , pp. 517-525.
[8] Chang, C.-C., Yang, S.-H., Chu, C.-C. (2008). A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech., 600, pp. 95-104.
[9] Chang, Chien‐Cheng, Ying‐Chien Hsiau, and Chin‐Chou Chu. (1993). Starting vortex and lift on an airfoil. Phy. Fluids A Fluid Dyn., 5(11), pp. 2826-2830.
[10] Chen, Z., Shatara, S., & Tan, X. (2010). Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Tran. Mech., 15(3), pp. 448-459.
[11] Cheng, S.-W., Dey, T.K., Shewchuk, J. (2012). Delaunay mesh generation. CRC Press.
[12] Dai, H., Luo, H., de Sousa, P. J. F., & Doyle, J. F. (2012). Thrust performance of a flexible low-aspect-ratio pitching plate. Phy. Fluids, 24(10).
[13] Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: an integrative view. Science, 288(5463), 100-106.
[14] Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol., 202(18), 2393-2412.
[15] Eloy, C. (2012). Optimal Strouhal number for swimming animals. J. Fluids Struct., 30, pp. 205-218.
[16] Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S., & Barrett, D. (1994). Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech., 274, pp. 1-21.
[17] Green, M. A., Rowley, C. W. and Smits, A. J. (2011). The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J. Fluid Mech., 685, 117-145.
[18] Green, M.A., Smits, A.J. (2008). Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech., 615, pp. 211-220.
[19] Guglielmini, L., & Blondeaux, P. (2004). Propulsive efficiency of oscillating foils. Euro. J. Mech. B Fluids, 23(2), pp. 255-278.
[20] Heathcote, S. and Gursul, I. (2007). Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J., 45, 1066-1079.
[21] Hsieh, C.-T., Chang, C.C., Chu, C.-C. (2009). Revisiting the aerodynamics of hovering flight using simple models. J. Fluid Mech., 623, pp. 121-148.
[22] Hsieh, C.-T., Kung, C.-F., Chang, C.C., Chu, C.-C. (2010). Unsteady aerodynamics of dragonfly using a simple wing–wing model from the perspective of a force decomposition. J. Fluid Mech., 663, pp. 233-252.
[23] Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. 193-208.
[24] Landau, L. D. & Lifshitz, E. M. (1987). Fluid Mechanics, 2nd edn. Pergamon.
[25] Lang, T.G., Daybell, D.A. (1963). Porpoise performance tests in a sea-water tank. NAVAL ORDNANCE TEST STATION CHINA LAKE CA.
[26] Lauder, G. V. (2011). Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. Exp. Fluids, 51(1), 23-35.
[27] Lauder, G.V., Anderson, E.J., Tangorra, J., Madden, P.G.,. (2007). Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol., 210(16), pp. 2767-2780.
[28] Lee, J. J., Hsieh, C. T., Chang, C. C., & Chu, C. C. (2012). Vorticity forces on an impulsively started finite plate. J. Fluid Mech., 694, pp. 464-492.
[29] Lewin, G. C., & Haj-Hariri, H. (2003). Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J. Fluid Mech., 492, 339-362.
[30] Li, G.-J., Lu, X.-Y. (2012). Force and power of flapping plates in a fluid. J. Fluid Mech., 712, pp. 598-613.
[31] Liao, J.C., Beal, D.N., Lauder, G.V., Triantafyllou, M.S. (2003). The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol., 206(6), pp. 1059-1073.
[32] Lighthill, J. (1986). Fundamentals concerning wave loading on offshore structures. J. Fluid Mech., 173, pp. 667-681.
[33] Lighthill, M. (1970). Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech., 44(02), pp. 265-301.
[34] Lighthill, M. (1971). Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B Biol. Sci., 179(1055), pp. 125-138.
[35] Lighthill, M. J. . , 1(1), 413-446. (1969). Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech., 1(1), pp. 413-446.
[36] Lindsey, C. C. (1979). Form, Function, and Locomotory Habits in Fish. Fish physiology, 7, 1-100.
[37] Maxworthy, T. (1981). The fluid dynamics of insect flight. Annu.l Rev. Fluid Mech., 13, pp. 329-350.
[38] Miao, J. M. and Ho, M. H. (2006). Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. J. Fluids Struct., 22, 401-419.
[39] Prempraneerach, P., Hover, F., Triantafyllou, M. (2003). The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. in: Proc. 13th Int. Symp. on Unmanned Untethered Submersible Technology: special session on bioengineering research related to autonomous underwater vehicles, (pp. 152-170). New Hampshire.
[40] Quinn, D. B., Lauder, G. V., & Smits, A. J. (2015). Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech., 767, 430-448.
[41] Read, D. A., Hover, F. S., & Triantafyllou, M. S. (2003). Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct., 17(1), pp. 163-183.
[42] Schouveiler, L., Hover, F., Triantafyllou, M. (2005). Performance of flapping foil propulsion. J. Fluids Struct., 20(7), pp. 949-959.
[43] Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). (1999). Review of fish swimming modes for aquatic locomotion. IEEE J. Oce. Eng., 24(2), pp. 237-252.
[44] Shin, S., Bae, S. Y., Kim, I. C., & Kim, Y. J. (2009). Effects of flexibility on propulsive force acting on a heaving foil. Ocean Eng., 36(3), pp. 285-294.
[45] Taggart, R. (1969). Marine Propulsion: Principles & Evolution. Gulf Publishing Company.
[46] Thielicke, W., & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Soft., 2(1).
[47] Thomas, P., Lombard, C. (1979). Geometric conservation law and its application to flow computations on moving grids. AIAA J., 17(10), pp. 1030-1037.
[48] Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. (1993). Optimal thrust development in oscillating foils with application to fish propulsion. . J. Fluids Struct., 7, 205-224.
[49] Triantafyllou, M. S., & Triantafyllou, G. S. (1995). An efficient swimming machine. Sci. Ame., 272(3), pp. 64-70.
[50] Tytell, E.D. (2006). Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. J. Exp. Biol., 209(8), pp. 1516-1534.
[51] Van Doormaal, J., Raithby, G. (1984). Enhancements of the SIMPLE method for predicting incompressible fluid flows. Num. heat tran., 7(2), pp. 147-163.
[52] Videler, J. (1981). Swimming movements, body structure and propulsion in cod Gadus morhua. in: Symp. Zool. Soc. Lond., pp. 1-27.
[53] Von Ellenrieder, K. D., Parker, K., & Soria, J. (2003). Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech., 490, 129-138.
[54] Webb, P. (1973). Effects of partial caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon (Oncorhynchus nerka) at steady swimming speeds. J. Exp. Biol., 59(3), pp. 565-582.
[55] Webb, P.W. (1984). Form and function in fish swimming. Sci. Ame., 251(1), pp. 72-83.
[56] Williamson, C. H. K., & Roshko, A. (1988). Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct., 2(4), pp. 355-381.
[57] Zeichner, G. R., & Schowalter, W. R. (1979). Effects of hydrodynamic and colloidal forces on the coagulation of dispersions. J. Coll. Inter. Sci., 72(9), pp. 237-253.
[58] Zhou, C., Low, K. (2012). Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Tran. Mech., 17(1), pp. 25-35.
[59] Zhu, Q. (2007). Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J., 45, pp. 2448-2457.
[60] Zhu, Q., Wolfgane, M. J. , Yue, D. K. P. and Triantafyllou, G.S. (2002). Three dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech, 1-28.
[61] Zhu, X., He, G., & Zhang, X. (2014). How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech., 751, pp. 164-183.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68087-
dc.description.abstract本研究基於力元理論觀點以數值模擬來探討在低雷諾數流場中,以有限長度撓性平板進行上下擺動(heave)模擬魚類尾鰭在BCF泳動模式中的受力機制。藉由調整不同雷諾數Re=200, 500 & 800、史卓荷數St=0.1~0.6與變形幅度a0=0.0, 0.1, 0.15, & 0.2,來觀察平板受力分布。透過力元理論來分析在整個擺動週期中撓性平板的受力機制,由CD - t曲線圖發現推力貢獻分別來自於平板加速變形運動所產生(C_Da)、流場中的渦流(C_Dv)以及物體表面渦度(C_Ds^')。當固定擺動頻率只有上下擺動(a0=0.0)會增加推力並且減少摩擦力,而固定擺動振幅進行擺動會使得兩種作用力會一起增加。在兩種不同的運動條件下隨著變形幅度增加,推力會有明顯成長,然而摩擦力也會有顯著提升。由文獻指出影響尾鰭受力主要來源是尾流,然而從區域體渦度分析可以清楚了解環繞於平板週圍的渦流皆會對結構造成受力變化。在固定擺動頻率的運動情況下,其分析結果觀察到尾流只佔整體推力20~30%,其次推力貢獻為平板上下區域與兩側區域。而固定擺動振幅的運動情況下,其分析結果觀察到尾流仍是佔整體推力約25%,其次推力貢獻為兩側區域與平板前緣區域。此外,受非定常擺動影響的勢流力與平板的表面渦度是無法被忽略力元貢獻。另一方面,在較高的史卓荷數與變形幅度條件下推力會遠大於阻力,但是仍會有所極限。同時也以力元理論仔細分析在不同擺動模式下的推進效率,結果顯示當高於臨界St=0.2,平板會產生正推進效率。zh_TW
dc.description.abstractA numerical study is conducted to investigate the force mechanisms for a 3D heaving flexible plate from the perspective of a diagnostic force element analysis. The problem is relevant to a simplified flapping fish-tail with the leading edge held heaving in the space. The flow is assumed to be laminar with the Reynolds numbers fixed at Re=200, 500 & 800, and the Strouhal number St ranging from 0.1 to 0.6, and the flexure amplitude of the plate a0 from 0.1 to 0.2 (dimensionless). As the finite plate is set into unsteady motion, complicated vortex patterns around the plate are generated. It is shown that in the case of a rigid plate (a0=0.0) under a constant heaving frequency (f), the generation of thrust is increased, while friction drag is reduced. As in the case of a rigid plate heaving upon a fixed amplitude (h0), both the thrust and friction drag are enhanced. When the flexibility (a0) of the plate increases from zero, the thrust generation and frictional drag on the plate both increase significantly under the two distinguished cases of having constant heaving frequency (f) and heaving amplitude (h0). In the literature, the force (thrust) exerted on the tail-mimicking plate is largely credited to the vortices (vorticity) in the wake. However, this study performs a regional force analysis to show that the vorticity in the wake region supplies approximately 20-30% of the total thrust, especially in the cases of strong thrust generation under the constant heaving frequency. Comparable contributions come also from the regions direct above and below the heaving plate (mainly including the attached vortices) as well as from the two side regions (mainly including the tip vortices) next to the flexible plate. In the case of fixed h0, 25% of the thrust is contributed from the wake region, and the secondary thrust contribution is obtained from the two side regions of the plate. In addition, the potential motion associated with the unsteady flapping and the contribution from the surface vorticity are non-negligible constituent force components. The net thrust generated is larger at higher St and a0, but this is of course limited by the maximum flexibility and heaving amplitude allowed. The relative importance of each of the various force contributions was analyzed in detail, and the results may shed light on how a flapping tail generates propulsive efficiency above the critical Strouhal number St=0.2.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:26Z (GMT). No. of bitstreams: 1
ntu-106-D01543001-1.pdf: 11540982 bytes, checksum: cfe37bbaa996c28657a060a1740361d9 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 導論 1
1.1. 研究背景 1
1.2. 研究動機 2
1.3. 文獻回顧 3
1.3.1. 魚類游動機制 3
1.3.2. 魚體週圍渦流之間的交互作用 4
1.3.3. 推進效率 9
1.3.4. 力元理論 10
1.4. 研究目的 11
1.5. 全文概述 12
第2章 力元理論 13
2.1. 前言 13
2.2. 輔助勢流 13
2.3. 單體力元理論推導 15
第3章 數值方法及控制方程式 21
3.1. 簡介 21
3.2. 網格產生 21
3.2.1. 數值擴散 22
3.2.2. 網格品質 23
3.3. 統御方程式 24
3.3.1. 質量守恆方程式 24
3.3.2. 動量守恆方程式 24
3.4. 數值求解方法 25
3.4.1. 時間離散 25
3.4.2. 空間離散 28
3.4.3. 壓力-速度耦合方程式 33
3.4.4. 分離求解器 40
3.5. 動態網格介紹 41
第4章 實驗設備與量測方法 42
4.1. 實驗設備 42
4.2. 實驗方法 44
4.3. 實驗量測與流場分析 45
第5章 結果與討論 47
5.1. 流場參數設定 48
5.2. 運動參數設定 50
5.3. 輔助勢流場數值計算結果 52
5.4. 數值結果驗證 53
5.5. 平板週圍的渦漩對受力的影響 53
5.6. 有限長平板(AR=1)在均勻流場中之受力情況 56
5.6.1. 不同變形幅度(a0)對平板的影響 56
5.6.2. 不同擺動振幅對平板的影響 58
5.6.3. 不同擺動頻率對平板的影響 61
5.6.4. 不同雷諾數Re對平板的影響 66
5.7. 三維流場分析 67
5.7.1. 環境渦流對於平板推力之影響 67
5.7.2. 擺動振幅對平板週圍流場的影響 72
5.7.3. 擺動頻率對平板週圍流場的影響 84
5.8. 推進效率(η)之探討 91
第6章 結論與未來展望 93
6.1. 結論 93
6.2. 未來展望 96
參考文獻 97
APPENDIX 104
dc.language.isozh-TW
dc.title以力元理論分析在中低雷諾數流場中撓性平板擺動之推力機制zh_TW
dc.titleA mechanism of thrust enhancement on a heaving plate due to flexibility at moderately low Reynolds numbers from the perspective of the force element theoryen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.coadvisor張建成(Chien-Cheng Chang)
dc.contributor.oralexamcommittee楊瑞珍(Ruey-Jen Yang),苗君易(Jiun-Jih Miau),潘從輝(Tsorng-Whay Pan),林慶龍(Ching-long Lin),陳建甫(Chien-Fu Cheng)
dc.subject.keyword撓性平板擺動,力元理論,輔助勢流,渦流動力學,推力產生,zh_TW
dc.subject.keywordFlapping flexible plate,Force-element theory,Auxiliary potential,Vortex dynamics,Thrust generation,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201704504
dc.rights.note有償授權
dc.date.accepted2017-12-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
11.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved