請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Ying-Chieh Chao | en |
| dc.contributor.author | 趙英捷 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:12:23Z | - |
| dc.date.available | 2023-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-12-27 | |
| dc.identifier.citation | 1. P. R. E. Smalley, Energy & NanoTechnology Conference, Rice University, May 3, 2003.
2. 馬振基;張正華;李陵嵐;葉處平;楊平華, 2007. 3. A.E.Becquerel, Acad. Sci., 1839, 9. 4. D. M. F. Chapin, C. S.; Pearson, G. L., Journal of Applied Physics, 1954, 25, 676-677. 5. http://rredc.nrel.gov/solar/spectra/am1.5/. 6. G. P. From M. Pagliaro, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York (2008). 7. H. S. Hoppe, N. S., J. Mater. Res., 2004, 19, 7. 8. A. C. S. Mayer, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. , Materials Today, 2007, 10, 28. 9. S. N. Gunes, H.; Sariciftci, N. S., Chem.Rev., 2007, 107, 1324. 10. F. C. G. Krebs, S. A.; Alstrup, J., J. Mater. Chem., 2009, 19, 5442. 11. 馮垛生, 五南圖書出版股份有限公司, 2009. 12. 郭明村, 工業材料雜誌, 2003, 203, 138. 13. A. B. Hagfeldt, G.; Sun, L.; Kloo, L.; Pettersson, H., Chem. Rev., 2010, 110, 6595. 14. B. G. O’Regan, M., Nature, 1991, 353, 737. 15. M. K. P. Nazeeruddin, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry, R.; , P. L. Comte, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; and C. A. G. Bignozzi, M., J. Am. Chem. Soc., 2001, 123, 1613. 16. G. P. Yu, K.; Heeger, A.J., Appl. Phys. Lett, 1994, 64, 3422. 17. C. W. Tang, Appl. Phys. Lett, 1986, 48, 183. 18. K. D. Petritsch, J. J.; Marseglia, E. A.; Friend, R. H.; Lux, A.; Rozenberg, G. G.; Moratti, S. C.; Holmes, A. B., Sol. Energy. Mater. Sol. Cells 2000, 61, 63. 19. L. F. Schmidt-Mende, A.; Mullen, K.; Moons, E.; Friend,R. H.; MacKenzie, J. D., Science, 2001, 293, 1119. 20. L. F. Schmidt-Mende, A.; Mullen, K.; Friend, R. H.; MacKenzie, J. D., Physica E 2002, 15, 263. 21. J. F. Roncali, P.; Blanchard, P.; De Bettignies, R.; Turbiez, M.;Roquet, S.; Leriche, P.; Nicolas, Y., Thin Sol. Films, 2006, 511, 567. 22. X. Z. Sun, Y.; Wu, W.; Liu, Y.; Tian, W.; Yu, G.; Qiu, W.; Chen, S.; Zhu, D., J. Phys. Chem. B 2006, 110, 7702. 23. M. T. M. Lloyd, A. C.; Tayi, A. S.; Bowen, A. M.; Kasen, T. G.; Herman, D. J.; Mourey, D. A.; Anthony, J. E.; Malliaras, G. G., Org. Electron., 2006, 7, 243. 24. D. H. W. Aung Ko Ko Kyaw, Vinay Gupta, Jie Zhang, Suresh Chand, Guillermo C. Bazan, and A. J. Heeger, Adv. Mater., 2013, 25, 2397. 25. V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan and A. J. Heeger, Scientific Reports, 2013, 3, 1965. 26. L. Y. Dou, J.; Yang, J.; Chen, C.C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Nat. Photon., 2012, 6, 180. 27. G. Z. Li, R.; Yang, Y., Nat. Photon., 2012, 6, 153. 28. C. Z. G. Yu, A. J. Heeger, Appl. Phys. Lett, 1994, 64, 1540. 29. H. B. V. I. Arkhipov, Phys. Status. Solid A., 2004, 201, 1152. 30. J.Nelson, Current Opinion in Solid State and Materials Science, 2002, 6, 87. 31. E. A. M. J. J. Dittmer, R. H. Friend, Adv. Mater., 2002, 17, 1270. 32. Z. C. D. Chirvase, M. Knipper, J. Parisi, V. Dyakonov, J. C. Hummelen, Synthetic Metals, 2003, 138, 299. 33. C. J. Z. Brabec, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S., Chem. Phys. Lett., 2001, 340, 232. 34. E. Lee, B. Hammer, J.-K. Kim, Z. Page, T. Emrick and R. C. Hayward, Journal of the American Chemical Society, 2011, 133, 10390-10393. 35. E. H. Ahlswede, J.; Powalla, M., Appl. Phys. Lett, 2007, 90, 163504. 36. T. F. A.K. Ghosh, J. Appl. Phys. Lett., 1978, 49, 5982. 37. A. M. a. P. Bauerle, Angew. Chem. Int. Ed., 2012, 51, 2020. 38. J. G. G. Yu, J. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789. 39. R. S. R. F. Padinger, N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85. 40. V. S. G. Li, Y. Yao, Y. Yang,, J. Appl. Phys., 2005, 98, 43704. 41. J. P. D. Chirvase, J. C. Hummelen, V. Dyakonov,, Nanotechnology, 2004, 15, 1317. 42. G. L. J. Huang, Y. Yang, Appl. Phys. Lett, 2005, 87, 112105. 43. J. Q. V. Shortriya, R. J. Tseng, G. Li, Y. Yang, Chem. Phys. Lett., 2005, 411, 138. 44. S. Wang, Y. Qu, S. Li, F. Ye, Z. Chen and X. Yang, Advanced Functional Materials, 2015, 25, 748-757. 45. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nat Photon, 2012, 6, 591-595. 46. A. J. Heeger, Advanced Materials, 2014, 26, 10-28. 47. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma and S.-A. Chen, Scientific Reports, 2014, 4, 6813. 48. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, Nat Commun, 2013, 4, 1446. 49. P. Cheng and X. Zhan, Chemical Society Reviews, 2016, 45, 2544-2582. 50. C. J. Schaffer, C. M. Palumbiny, M. A. Niedermeier, C. Jendrzejewski, G. Santoro, S. V. Roth and P. Müller‐Buschbaum, Advanced Materials, 2013, 25, 6760-6764. 51. W. Kim, J. K. Kim, E. Kim, T. K. Ahn, D. H. Wang and J. H. Park, The Journal of Physical Chemistry C, 2015, 119, 5954-5961. 52. A. Tournebize, A. Rivaton, H. Peisert and T. Chassé, The Journal of Physical Chemistry C, 2015, 119, 9142-9148. 53. D. H. Wang, A. Pron, M. Leclerc and A. J. Heeger, Advanced Functional Materials, 2013, 23, 1297-1304. 54. N. K. Zawacka, T. R. Andersen, J. W. Andreasen, L. H. Rossander, H. F. Dam, M. Jorgensen and F. C. Krebs, Journal of Materials Chemistry A, 2014, 2, 18644-18654. 55. A. Distler, T. Sauermann, H.-J. Egelhaaf, S. Rodman, D. Waller, K.-S. Cheon, M. Lee and D. M. Guldi, Advanced Energy Materials, 2014, 4, 1300693-n/a. 56. M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch and A. Gombert, Solar Energy Materials and Solar Cells, 2007, 91, 390-393. 57. K. Norrman and F. C. Krebs, Solar Energy Materials and Solar Cells, 2006, 90, 213-227. 58. M. O. Reese, A. M. Nardes, B. L. Rupert, R. E. Larsen, D. C. Olson, M. T. Lloyd, S. E. Shaheen, D. S. Ginley, G. Rumbles and N. Kopidakis, Advanced Functional Materials, 2010, 20, 3476-3483. 59. J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel and V. Dyakonov, Organic Electronics, 2010, 11, 1693-1700. 60. A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.-J. Egelhaaf and J. Hauch, Solar Energy, 2011, 85, 1238-1249. 61. R. Pacios, A. J. Chatten, K. Kawano, J. R. Durrant, D. D. Bradley and J. Nelson, Advanced Functional Materials, 2006, 16, 2117-2126. 62. E. Voroshazi, I. Cardinaletti, T. Conard and B. P. Rand, Advanced Energy Materials, 2014, 4, 1400848-n/a. 63. F. C. Krebs, M. Hösel, M. Corazza, B. Roth, M. V. Madsen, S. A. Gevorgyan, R. R. Søndergaard, D. Karg and M. Jørgensen, Energy Technology, 2013, 1, 378-381. 64. L. Dou, C.-C. Chen, K. Yoshimura, K. Ohya, W.-H. Chang, J. Gao, Y. Liu, E. Richard and Y. Yang, Macromolecules, 2013, 46, 3384-3390. 65. X. Zhan, Z. a. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen and S. R. Marder, Journal of the American Chemical Society, 2007, 129, 7246-7247. 66. P. J. Flory, Principles of polymer chemistry, Cornell University Press, 1953. 67. T. Wang, A. J. Pearson, A. D. Dunbar, P. A. Staniec, D. C. Watters, H. Yi, A. J. Ryan, R. A. Jones, A. Iraqi and D. G. Lidzey, Advanced Functional Materials, 2012, 22, 1399-1408. 68. J. Bergqvist, C. Lindqvist, O. Bäcke, Z. Ma, Z. Tang, W. Tress, S. Gustafsson, E. Wang, E. Olsson and M. R. Andersson, Journal of Materials Chemistry A, 2014, 2, 6146-6152. 69. E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney and Z. Bao, Advanced Functional Materials, 2010, 20, 3519-3529. 70. C. Lindqvist, A. Sanz-Velasco, E. Wang, O. Bäcke, S. Gustafsson, E. Olsson, M. R. Andersson and C. Müller, Journal of Materials Chemistry A, 2013, 1, 7174-7180. 71. J. Jo, S. S. Kim, S. I. Na, B. K. Yu and D. Y. Kim, Advanced Functional Materials, 2009, 19, 866-874. 72. P. W. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, Advanced Materials, 2007, 19, 1551-1566. 73. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nature materials, 2005, 4, 864-868. 74. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray and L. Yu, Journal of the American Chemical Society, 2009, 131, 7792-7799. 75. L. Lu and L. Yu, Advanced Materials, 2014, 26, 4413-4430. 76. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Advanced Materials, 2010, 22, E135-E138. 77. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li and J. Hou, Angewandte Chemie International Edition, 2011, 50, 9697-9702. 78. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, Nature Photonics, 2015, 9, 174-179. 79. J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li and J.-X. Tang, Advanced Materials, 2015, 27, 1035-1041. 80. S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, Advanced Materials, 2013, 25, 4766-4771. 81. F. C. Krebs, Solar Energy Materials and Solar Cells, 2009, 93, 465-475. 82. F. C. Krebs, S. A. Gevorgyan and J. Alstrup, Journal of Materials Chemistry, 2009, 19, 5442-5451. 83. F. C. Krebs, T. Tromholt and M. Jørgensen, Nanoscale, 2010, 2, 873-886. 84. M. Manceau, E. Bundgaard, J. E. Carle, O. Hagemann, M. Helgesen, R. Sondergaard, M. Jorgensen and F. C. Krebs, Journal of Materials Chemistry, 2011, 21, 4132-4141. 85. J.-M. Y. Carrillo, R. Kumar, M. Goswami, B. G. Sumpter and W. M. Brown, Physical Chemistry Chemical Physics, 2013, 15, 17873-17882. 86. E. Bundgaard, M. Helgesen, J. E. Carlé, F. C. Krebs and M. Jørgensen, Macromolecular Chemistry and Physics, 2013, 214, 1546-1558. 87. M. Helgesen, M. V. Madsen, B. Andreasen, T. Tromholt, J. W. Andreasen and F. C. Krebs, Polymer Chemistry, 2011, 2, 2536-2542. 88. J. Yu and S. Holdcroft, Chemistry of materials, 2002, 14, 3705-3714. 89. L. Li, D. L. Jacobs, Y. Che, H. Huang, B. R. Bunes, X. Yang and L. Zang, Organic Electronics, 2013, 14, 1383-1390. 90. H.-W. Liu, D.-Y. Chang, W.-Y. Chiu, S.-P. Rwei and L. Wang, Journal of Materials Chemistry, 2012, 22, 15586-15591. 91. Y.-C. Lai, T. Higashihara, J.-C. Hsu, M. Ueda and W.-C. Chen, Solar Energy Materials and Solar Cells, 2012, 97, 164-170. 92. H. Waters, J. Kettle, S.-W. Chang, C.-J. Su, W.-R. Wu, U.-S. Jeng, Y.-C. Tsai and M. Horie, Journal of Materials Chemistry A, 2013, 1, 7370-7378. 93. D. M. Lyons, J. Kesters, W. Maes, C. W. Bielawski and J. L. Sessler, Synthetic Metals, 2013, 178, 56-61. 94. D. He, X. Du, W. Zhang, Z. Xiao and L. Ding, Journal of Materials Chemistry A, 2013, 1, 4589-4594. 95. G. Griffini, J. D. Douglas, C. Piliego, T. W. Holcombe, S. Turri, J. M. Fréchet and J. L. Mynar, Advanced Materials, 2011, 23, 1660-1664. 96. B. J. Kim, Y. Miyamoto, B. Ma and J. M. Frechet, Advanced functional materials, 2009, 19, 2273-2281. 97. C. H. Woo, C. Piliego, T. W. Holcombe, M. F. Toney and J. M. Fréchet, Macromolecules, 2012, 45, 3057-3062. 98. Y.-H. Chen, P.-T. Huang, K.-C. Lin, Y.-J. Huang and C.-T. Chen, Organic Electronics, 2012, 13, 283-289. 99. J.-F. Nierengarten and S. Setayesh, New Journal of Chemistry, 2006, 30, 313-316. 100. Y.-J. Cheng, C.-H. Hsieh, P.-J. Li and C.-S. Hsu, Advanced Functional Materials, 2011, 21, 1723-1732. 101. C.-P. Chen, C.-Y. Huang and S.-C. Chuang, Advanced Functional Materials, 2015, 25, 207-213. 102. A. Diacon, L. Derue, C. Lecourtier, O. Dautel, G. Wantz and P. Hudhomme, Journal of Materials Chemistry C, 2014, 2, 7163-7167. 103. L. Derue, C. Lecourtier, T. Gorisse, L. Hirsch, O. Dautel and G. Wantz, RSC Advances, 2015, 5, 3840-3843. 104. J. W. Rumer, R. S. Ashraf, N. D. Eisenmenger, Z. Huang, I. Meager, C. B. Nielsen, B. C. Schroeder, M. L. Chabinyc and I. McCulloch, Advanced Energy Materials, 2015, 5, 1401426-n/a. 105. H.-Y. Tseng, B. Purushothaman, J. Anthony and V. Subramanian, Organic Electronics, 2011, 12, 1120-1125. 106. L. Derue, O. Dautel, A. Tournebize, M. Drees, H. Pan, S. Berthumeyrie, B. Pavageau, E. Cloutet, S. Chambon and L. Hirsch, Advanced Materials, 2014, 26, 5831-5838. 107. G. Li, R. Zhu and Y. Yang, Nature Photonics, 2012, 6, 153-161. 108. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nature Photonics, 2012, 6, 591-595. 109. J. Roncali, Accounts of chemical research, 2009, 42, 1719-1730. 110. A. J. Moulé and K. Meerholz, Advanced Functional Materials, 2009, 19, 3028-3036. 111. A. Mishra and P. Bäuerle, Angewandte Chemie International Edition, 2012, 51, 2020-2067. 112. G. Dennler, M. C. Scharber and C. J. Brabec, Advanced Materials, 2009, 21, 1323-1338. 113. A. R. Mohebbi and F. Wudl, Chemistry – A European Journal, 2011, 17, 2642-2646. 114. A. R. Mohebbi, J. Yuen, J. Fan, C. Munoz, M. f. Wang, R. S. Shirazi, J. Seifter and F. Wudl, Advanced Materials, 2011, 23, 4644-4648. 115. M. Wang, A. R. Mohebbi, Y. Sun and F. Wudl, Angewandte Chemie International Edition, 2012, 51, 6920-6924. 116. B. J. Kim, Y. Miyamoto, B. Ma and J. M. J. Fréchet, Advanced Functional Materials, 2009, 19, 2273-2281. 117. C. H. Woo, C. Piliego, T. W. Holcombe, M. F. Toney and J. M. J. Fréchet, Macromolecules, 2012, 45, 3057-3062. 118. Y.-H. Chen, P.-T. Huang, K.-C. Lin, Y.-J. Huang and C.-T. Chen, Organic Electronics, 2012, 13, 283-289. 119. J. Kesters, S. Kudret, S. Bertho, N. Van den Brande, M. Defour, B. Van Mele, H. Penxten, L. Lutsen, J. Manca, D. Vanderzande and W. Maes, Organic Electronics, 2014, 15, 549-562. 120. H. J. Kim, A. R. Han, C.-H. Cho, H. Kang, H.-H. Cho, M. Y. Lee, J. M. J. Fréchet, J. H. Oh and B. J. Kim, Chemistry of Materials, 2012, 24, 215-221. 121. P. Leriche, F. Piron, E. Ripaud, P. Frère, M. Allain and J. Roncali, Tetrahedron Letters, 2009, 50, 5673-5676. 122. N. Metri, X. Sallenave, L. Beouch, C. Plesse, F. Goubard and C. Chevrot, Tetrahedron Letters, 2010, 51, 6673-6676. 123. G. Vincow, M. L. Morrell, W. V. Volland, H. J. Dauben and F. R. Hunter, Journal of the American Chemical Society, 1965, 87, 3527-3529. 124. J. Mei and Z. Bao, Chemistry of Materials, 2014, 26, 604-615. 125. Z. Ding, J. Kettle, M. Horie, S. W. Chang, G. C. Smith, A. I. Shames and E. A. Katz, Journal of Materials Chemistry A, 2016, 4, 7274-7280. 126. C.-Y. Chang, Y.-J. Cheng, S.-H. Hung, J.-S. Wu, W.-S. Kao, C.-H. Lee and C.-S. Hsu, Advanced Materials, 2012, 24, 549-553. 127. J.-Y. Wang, S. K. Hau, H.-L. Yip, J. A. Davies, K.-S. Chen, Y. Zhang, Y. Sun and A. K. Y. Jen, Chemistry of Materials, 2011, 23, 765-767. 128. W. Li, K. H. Hendriks, A. Furlan, A. Zhang, M. M. Wienk and R. A. J. Janssen, Chemical Communications, 2015, 51, 4290-4293. 129. K.-S. Chen, J.-F. Salinas, H.-L. Yip, L. Huo, J. Hou and A. K. Y. Jen, Energy & Environmental Science, 2012, 5, 9551-9557. 130. C.-C. Chueh, S.-C. Chien, H.-L. Yip, J. F. Salinas, C.-Z. Li, K.-S. Chen, F.-C. Chen, W.-C. Chen and A. K. Y. Jen, Advanced Energy Materials, 2013, 3, 417-423. 131. Z. Zheng, S. Zhang, M. Zhang, K. Zhao, L. Ye, Y. Chen, B. Yang and J. Hou, Advanced Materials, 2015, 27, 1189-1194. 132. W. Yu, X. Jia, M. Yao, L. Zhu, Y. Long and L. Shen, Physical Chemistry Chemical Physics, 2015, 17, 23732-23740. 133. D.-D. Zhang, X.-C. Jiang, R. Wang, H.-J. Xie, G.-F. Ma, Q.-D. Ou, Y.-L. Chen, Y.-Q. Li and J.-X. Tang, ACS Applied Materials & Interfaces, 2013, 5, 10185-10190. 134. J.-H. Lu, Y.-L. Yu, S.-R. Chuang, C.-H. Yeh and C.-P. Chen, The Journal of Physical Chemistry C, 2016, 120, 4233-4239. 135. K. Zilberberg and T. Riedl, Journal of Materials Chemistry A, 2016, 4, 14481-14508. 136. A. Naibi Lakshminarayana, J. Chang, J. Luo, B. Zheng, K.-W. Huang and C. Chi, Chemical Communications, 2015, 51, 3604-3607. 137. H.-J. Wang, C.-W. Chou, C.-P. Chen, Y.-H. Chen, R.-H. Lee and R.-J. Jeng, Journal of Materials Chemistry A, 2013, 1, 8950-8960. 138. C.-P. Chen and H.-L. Hsu, Macromolecular Rapid Communications, 2013, 34, 1623-1628. 139. S. Vegiraju, C.-M. Hsieh, D.-Y. Huang, Y.-C. Chen, P. Priyanka, J.-S. Ni, F. A. Esya, C. Kim, S. L. Yau, C.-P. Chen, C.-L. Liu and M.-C. Chen, Dyes and Pigments, 2016, 133, 280-291. 140. K. Wang, C. Liu, T. Meng, C. Yi and X. Gong, Chem Soc Rev, 2016, 45, 2937-2975. 141. C.-P. Chen, Y.-C. Chen and C.-Y. Yu, Polymer Chemistry, 2013, 4, 1161-1166. 142. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chemical Reviews, 2009, 109, 5868-5923. 143. P. Cheng, C. Yan, Y. Li, W. Ma and X. Zhan, Energy & Environmental Science, 2015, 8, 2357-2364. 144. I. Osaka, T. Kakara, N. Takemura, T. Koganezawa and K. Takimiya, Journal of the American Chemical Society, 2013, 135, 8834-8837. 145. P. Cheng, C. Yan, T.-K. Lau, J. Mai, X. Lu and X. Zhan, Advanced Materials, 2016, 28, 5822-5829. 146. Y.-C. Chao, C.-H. Chuang, H.-L. Hsu, H.-J. Wang, Y.-C. Hsu, C.-P. Chen and R.-J. Jeng, Solar Energy Materials and Solar Cells, 2016, 157, 666-675. 147. Y.-C. Chao, S.-C. Yeh, H.-L. Hsu, B.-H. Jiang, K.-H. Sun, C.-T. Chen, C.-P. Chen and R.-J. Jeng, Organic Electronics, 2017, 49, 114-122. 148. J. W. Rumer, R. S. Ashraf, N. D. Eisenmenger, Z. Huang, I. Meager, C. B. Nielsen, B. C. Schroeder, M. L. Chabinyc and I. McCulloch, Advanced Energy Materials, 2015, 5, n/a-n/a. 149. Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang and Y. Li, Advanced Functional Materials, 2016, 26, 6635-6640. 150. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Advanced materials, 2000, 12, 481-494. 151. D. McCumber, Physical Review, 1964, 136, A954. 152. T. Jacobson, Physical Review Letters, 1995, 75, 1260. 153. A. Einstein, Investigations on the Theory of the Brownian Movement, Courier Corporation, 1956. 154. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu and X. Zhan, Advanced Materials, 2015, 27, 1170-1174. 155. P. Cheng, C. Yan, Y. Wu, S. Dai, W. Ma and X. Zhan, Journal of Materials Chemistry C, 2016, 4, 8086-8093. 156. S. B. Dkhil, M. Pfannmöller, M. I. Saba, M. Gaceur, H. Heidari, C. Videlot-Ackermann, O. Margeat, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, A. Mattoni, S. Bals and J. Ackermann, Advanced Energy Materials, 2017, 7, 1601486-n/a. 157. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nature Materials, 2008, 7, 158. 158. D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. M. Emmott, J. Nelson, C. J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant and I. McCulloch, Nature Materials, 2016, 16, 363. 159. H. C. Wong, A. M. Higgins, A. R. Wildes, J. F. Douglas and J. T. Cabral, Advanced Materials, 2013, 25, 985-991. 160. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao and J. Hou, Advanced Materials, 2016, 28, 4734-4739. 161. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang and J. Hou, Journal of the American Chemical Society, 2017, 139, 7148-7151 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68084 | - |
| dc.description.abstract | Part Ⅰ.具有末端官能基的共軛小分子添加劑
在這項工作中,我們準備了四個星形共軛小分子,三苯胺二噻吩(TBT)衍生物,即TBT-H,TBT-Br,TBT-OH和TBT-N3分別具有不同端基,氫化物,溴化物,羥基和疊氮化物末端官能基。這些TBT衍生物應用於有機光伏電池的活性層的添加劑,以研究分子間相互作用(TBT-H,TBT-OH)或交聯(TBT-N3,TBT-Br)對有機光伏的長期熱穩定性的影響設備。從混合膜形態,光電子和器件性能的分析,我們觀察到在加熱添加劑TBT-N3和TBT-Br的設備中在150°C的加速加熱測試期間的熱穩定性的顯著增強。這兩種添加劑作為交聯劑,並構造有效阻止熱促進的富勒烯的聚集,從而導致高度穩定的形態。當與相應的正常器件比較時,P3HT導入TBT-N3的元件表現出更大的穩定性。在150°C下144小時之後,光電轉換效率(PCE)仍能保持高達2.5%。由於這種增強,製造了基於非晶低帶隙聚合物PTB7添加了TBT-N3。我們觀察到器件穩定性的顯著改進,在150 °C加熱的加速實驗下,保持其初始PCE的約60%(從5.0%至3.3%)。相反,相應的正常器件的PCE衰減到其初始值的0.01%。 Part II. 可見光高穿透的共軛高分子 在本研究中,我們合成了兩種EMD高分子衍生物、分別為PBTEMD和PFEMD。這些EMD衍生物聚合物用作在聚合物太陽能電池的活性層中當作給體與PC71BM共混之共混膜,以研究它們的光電性能和其相關的光伏性能。據我們所知,這是第一個使用EMD衍生物應用於有機太陽能電池的研究。我們比較了其分子結構,相關的吸收、能階、熱性能和有機太陽能電池的熱穩定性。因為PEEMD的主吸收處於近紅外光譜(600nm至800nm)的範圍內。PFEMD的共混膜膜厚為95nm時其透明度高於80%,並且所構造的器件在AM 1.5G(100mW cm -2)下顯示最高2.5%的光電功率轉換效率。除此之外,我們觀察到交聯型添加劑(TBT-N3)的元件其熱穩定性有顯著提高。在150°C加熱的加速實驗下,仍能保持約60%的初始PCE。相反的其相對應的正常器件其PCE衰減到其初始值的0.01%,己微乎其微。 Part III. 添加多功能添加劑對有機光伏增強器件性能和穩定性的影響 在本研究中,我們開發了以二酮吡咯並吡咯(DPP)為核心的新型添加劑具有末端疊氮官能基團的烷基鏈以及不同推拉電子性與交聯官能基的共軛臂,分別命名為;DPPBTDA,DPPPDA和DPPTPTA。為了研究導入添加劑對光電效率與熱穩定性提升的影響,我們分別將DPPBTDA,DPPPDA和DPPTPTA摻入以商業化且具有高效率的有機導電高分子(PTB7-Th)作為供體和富勒烯衍生物(PC61BM)作為受體組成的活性層中。探討不同添加量的DPPBTDA、DPPPDA或DPPTPTA於倒置結構中的形貌變化與光電特性。在光伏性能方面,5 wt%DPPBTDA時展現了6.75 %的功率轉換效率,而5%DPPPDA的OPV顯示7.35%的PCE。其中呈現最高光電轉換效率的為PTB7-Th:PC61BM與DPPTPTA為3 wt%時呈現高達8.11%的光電轉換效率,達到了20%的效率提升。於熱交聯反應的部分我們利用FT-IR和DSC進行分析,發現所設計的添加劑其反應溫度會受其熔點與結晶度所影響。由FT-IR的結果得知本研究所設計的三個添加劑皆能與PC61BM產生交聯反應。其加熱後的結晶現象也由光學顯微鏡(OM)的結果得以證實。加入交聯劑的活性層在150°C下加熱18小時後僅觀察到很少的富勒烯晶體,反觀未添加交聯劑的PTB7-Th:PC61BM共混膜在150°C下加熱6小時後便觀察到其共混膜產生大量的PCBM結晶。其OM所觀察到的現象與光電轉換效率相似,未導入添加劑的PTB7-Th:PC61BM共混膜於6小時後便不具光電轉換效率,再導入添加劑的部分,其中導入5 wt%的DPPTPTA 在150°C下加熱18小時後,功率轉換效率保持在4.02%。由電荷遷移率以及AFM的分析結果中得知階梯狀的能階能有效的提高光電轉換效率,且經交聯反應後能有效提高PTB7-Th:PC61BM共混膜的熱穩定性。 | zh_TW |
| dc.description.abstract | Part Ⅰ. Conjugated small molecule additives with terminal functional groups
In this work, we prepared four star-shaped conjugated small molecules, the triphenylamine dithiophene (TBT) derivatives, namely TBT-H, TBT-Br, TBT-OH, and TBT-N3 presenting hydride, bromide, hydroxyl, and azide terminal functional groups, respectively. These TBT derivatives were used as additives in the active layers of organic photovoltaics to investigate the effect of intermolecular interactions (TBT-H, TBT-OH) or crosslinking (TBT-N3, TBT-Br) on the long-term thermal stability of the devices. From analyses of blend film morphologies, and optoelectronic and device performance, we observed significant enhancements in thermal stability during accelerated heating tests at 150 °C for the devices incorporated with the additives TBT-N3 and TBT-Br. These two additives functioned as crosslinkers, and constructed local borders that effectively impeded heat-promoted fullerene aggregation, thereby leading to highly stable morphologies. When compared with corresponding normal devices, the TBT-N3–derived devices based on poly(3-hexylthiophene) exhibited greater stability, with the power conversion efficiency (PCE) remaining as high as 2.5% after 144 h at 150 °C. Because of this enhancement, a device based on an amorphous low-bandgap polymer, namely poly(thieno[3,4-b]thiophene-alt-benzodithiophene), with the addition of TBT-N3 was fabricated. We observed a significant improvement in device stability, retaining approximately 60% (from 5.0 to 3.3%) of its initial PCE under accelerated heating (150 °C). In contrast, the PCE of the corresponding normal device decayed to 0.01% of its initial value. Part II. Visibly Transparent Low Bandgap Conjugated Polymers In this study, we synthesized two emeraldicene (EMD) based conjugated polymers, by polymerization with 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole and (2-ethylhexyl) -9H-fluorene, namely PBTEMD and PFEMD, respectively. These EMD derivatives polymers were used as donor materials that blend with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) in the active layers of polymer solar cells (PSCs) to investigate their optoelectronic properties and related photovoltaic performance. To best of our knowledge, this is the first study using EMD derivatives for PSC application. We compared their molecular structure, related absorption, energy levels, thermal properties and thermal stability for PSC application. The main absorption of PFEMD is in the range of near IR spectrum (600nm to 800nm). We obtained transparency of greater than 85% for the blend film of PFEMD and the constructed device exhibited the power conversion of 2.5 % under AM 1.5 G (100 mW cm−2). Apart from that, we observed a significant enhancement in thermal stability for the device incorporating an additive crosslinker (TBT-N3), which retaining approximately 60% of its initial PCE under accelerated heating (150 °C). In contrast, the PCE of the corresponding normal device decayed to 0.01% of its initial value. Part III. Enhancement Device Performance and Stability of Organic Photovoltaics via Incorporating Multifunctional additive A novel type of crosslinkers based on diketopyrrolopyrrole (DPP) as core, azide groups on the terminal of alkyl chains along with bithienyl, phenyl or terphenyl as conjugated arms (DPPBTDA, DPPPDA and DPPTPTA, accordingly) were developed. In order to investigate the enhancement of efficiency and thermal stability caused by crosslinkers, DPPBTDA, DPPPDA and DPPTPTA were respectively blend into the active layer which consists of a high performance conducting polymer (PTH7-Th) and a fullerene derivative (PC61BM). Inverted organic photovoltaics (OPVs) were fabricated by spin-coating the blends of PTB7-Th as donor, PC61BM as acceptor and different amounts of DPPBTDA, DPPPDA or DPPTPTA. In terms of photovoltaic performance, the OPV with 5% DPPBTDA showed the power conversion efficiency (PCE) of 6.75 % whereas the OPV with 5% DPPPDA showed a PCE of 7.35 %. Furthermore, a PCE of 8.11 % was observed for the PTB7-TH:PC61BM blending with 3 % DPPTPTA. On the other hand, the morphology of active layer has to be carefully controlled to offer optimum photovoltaic performances. According to FT-IR and UV-vis analysis, the crosslinking reaction did occur between the additives and PC61BM. The optical microscope (OM) result also indicates that only few fullerene crystals can be observed in the active layers with the crosslinkers upon heating the samples at 150˚C for 18 hours. Especially, the device with 5% DPPTPTA remained a power conversion efficiency of 4.02 % after heated at 150˚C for 18 h. Apart from that, the result of charge mobilities and atomic force microscope (AFM) showed ladder type energy level can be increase photovoltaics performance, and further enhance the thermal stability via crosslinking reactions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:12:23Z (GMT). No. of bitstreams: 1 ntu-106-D02549003-1.pdf: 10407536 bytes, checksum: d3a75662373b78d20353c1b3e486e70f (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 中文摘要 III 英文摘要 V 第一章 緒論 1 1.1前言 1 1.2太陽能發展歷史及太陽能電池介紹 1 1.3 太陽放射光譜圖 2 1.4 太陽能電池基本特性參數 3 1-4無機與有機太陽能電池 5 1.5 有機太陽能電池工作原理 10 1.6 有機太陽能元件的發展 11 1.6.1 單層結構(single layer) 11 1.6.2 雙層結構(bilayer)異質接面(heterojuncion)結構 12 1.6.3單層異質接面結構(bulk heterojunction) 13 第二章 文獻回顧與研究動機 15 2.1 穩定性的影響因子 15 2.2 水氧對穩定性的影響 17 2.3 光照對穩定性的影響 17 2.4 機械力對穩定性的影響 18 2.5 熱對穩定性的影響 19 2.6 提升穩定性的方法 23 2.7研究動機 32 第三章實驗內容 33 3.1使用藥品於溶劑 33 3.2使用儀器 35 3.3實驗流程 38 材料合成 39 第四章 結果與討論 67 Part Ⅰ.具有末端官能基的共軛小分子添加劑 67 Part II. 可見光高穿透的共軛高分子 79 Part III. 添加多功能添加劑對有機光伏增強器件性能和穩定性的影響 92 第五章 結論 106 第六章 未來研究 108 第七章 參考文獻 112 附錄 119 作者介紹 138 發表著作 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱穩定性 | zh_TW |
| dc.subject | 分子間作用力 | zh_TW |
| dc.subject | 聚合物太陽能電池 | zh_TW |
| dc.subject | 有機光伏電池 | zh_TW |
| dc.subject | 交聯劑 | zh_TW |
| dc.subject | EMD衍生物 | zh_TW |
| dc.subject | 高穿透度 | zh_TW |
| dc.subject | high transparency | en |
| dc.subject | polymer solar cells | en |
| dc.subject | intermolecular interaction | en |
| dc.subject | crosslinker | en |
| dc.subject | thermal stability | en |
| dc.subject | Emeraldicene derivatives | en |
| dc.subject | organic photovoltaics | en |
| dc.title | 共軛添加劑對有機光伏太陽能電池之熱穩定性探討 | zh_TW |
| dc.title | Study of Conjugated Additives for Thermally Stable Organic Photovoltaics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 童世煌(Shih-Huang Tung),陳錦地(Chin-Ti Chen),陳志平(Chih-Ping Chen),石燕鳳(Yeng-Fong Shih),詹立行(Li-Hsin Chan) | |
| dc.subject.keyword | 有機光伏電池,聚合物太陽能電池,分子間作用力,交聯劑,熱穩定性,EMD衍生物,高穿透度, | zh_TW |
| dc.subject.keyword | organic photovoltaics,polymer solar cells,intermolecular interaction,crosslinker,thermal stability,Emeraldicene derivatives,high transparency, | en |
| dc.relation.page | 140 | |
| dc.identifier.doi | 10.6342/NTU201704510 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-12-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 10.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
