Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘(Hsin-Min Lu)
dc.contributor.authorYu-Ching Changen
dc.contributor.author張郁卿zh_TW
dc.date.accessioned2021-06-17T02:12:11Z-
dc.date.available2019-01-27
dc.date.copyright2018-01-27
dc.date.issued2017
dc.date.submitted2017-12-28
dc.identifier.citationBailey, N. T. (1955). Some problems in the statistical analysis of epidemic data. Journal of the Royal Statistical Society. Series B (Methodological), 35-68.
Bisgin, H., Liu, Z., Fang, H., Xu, X., & Tong, W. (2011). Mining FDA drug labels using an unsupervised learning technique-topic modeling. BMC bioinformatics, 12(10), S11.
Bisgin, H., Liu, Z., Kelly, R., Fang, H., Xu, X., & Tong, W. (2012). Investigating drug repositioning opportunities in FDA drug labels through topic modeling. BMC bioinformatics, 13(15), S6.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438.
Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235.
Hsieh, Y. H. (2013). Ascertaining the 2004–2006 HIV type 1 CRF07_BC outbreak among injecting drug users in Taiwan. International Journal of Infectious Diseases, 17(10), e838-e844.
Jiang, Z., Zhou, X., Zhang, X., & Chen, S. (2012, October). Using link topic model to analyze traditional chinese medicine clinical symptom-herb regularities. In e-Health Networking, Applications and Services (Healthcom), 2012 IEEE 14th International Conference on (pp. 15-18). IEEE.
Kuster, S. P., Tuite, A. R., Kwong, J. C., McGeer, A., Fisman, D. N., & Toronto Invasive Bacterial Diseases Network. (2011). Evaluation of coseasonality of influenza and invasive pneumococcal disease: results from prospective surveillance. PLoS Med, 8(6), e1001042.
Li, Y. J., Li, X. L., Liang, S., Fang, L. Q., & Cao, W. C. (2013). Epidemiological features and risk factors associated with the spatial and temporal distribution of human brucellosis in China. BMC infectious diseases, 13(1), 1.
Marsden-Haug, N., Foster, V. B., Gould, P. L., Elbert, E., Wang, H., & Pavlin, J. A. (2007). Code-based Syndromic Surveillance for Influenzalike Illness by International Classification of Diseases, Ninth Revision. Emerging Infectious Diseases, 13(2), 207–216. http://doi.org/10.3201/eid1302.060557
Morens, D. M., & Fauci, A. S. (2013). Emerging infectious diseases: threats to human health and global stability. PLoS Pathog, 9(7), e1003467.
Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re-emerging infectious diseases. Nature, 430(6996), 242-249.
Ray, B., Ghedin, E., & Chunara, R. (2016). Network inference from multimodal data: A review of approaches from infectious disease transmission. Journal of biomedical informatics, 64, 44-54.
Rekart, M. L., Gilbert, M., Meza, R., Kim, P. H., Chang, M., Money, D. M., & Brunham, R. C. (2013). Chlamydia public health programs and the epidemiology of pelvic inflammatory disease and ectopic pregnancy. Journal of Infectious Diseases, 207(1), 30-38.
Salathé, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020-22025.
Shaman, J., Karspeck, A., Yang, W., Tamerius, J., & Lipsitch, M. (2013). Real-time influenza forecasts during the 2012–2013 season. Nature communications, 4.
Teunis, P., Heijne, J. C., Sukhrie, F., van Eijkeren, J., Koopmans, M., & Kretzschmar, M. (2013). Infectious disease transmission as a forensic problem: who infected whom?. Journal of the Royal Society Interface, 10(81), 20120955.
Yang, X., Liu, J., Zhou, X.-N., & Cheung, W. K. (2014). Inferring disease transmission networks at a metapopulation level. Health Information Science and Systems, 2, 8. http://doi.org/10.1186/2047-2501-2-8
Zhou, X., Menche, J., Barabási, A. L., & Sharma, A. (2014). Human symptoms–disease network. Nature communications, 5.
林民浩, 楊安琪, & 溫在弘. (2011). 利用地區差異與人口學特徵評估全民健保資料庫人口居住地變項之推估原則. 臺灣公共衛生雜誌, 30(4), 347-361.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68074-
dc.description.abstract疾病傳播網路可以提供個人有效的資訊幫助保護自己,也可以幫助政府預防及控制感染疾病的擴散。目前有關傳染病的研究多侷限於小樣本、特定區域。本研究期望透過歷史醫療保險申報資料計算健康狀況時間序列,並以此建立疾病傳播網路。我們採用格蘭傑因果關係檢定以辨識目標群體與其他人之間潛在的傳播路徑。我們使用疾病傳播網路上鄰居的過去健保申報紀錄預測未來感染相似疾病事件來評估疾病網路的效果。與只使用個人過去歷史就醫紀錄的基準線模型相比,加入疾病傳播網路可以小幅度改善預測的表現。zh_TW
dc.description.abstractDisease transmission network can provide important information for individuals to protect themselves and to support governments to prevent and control infectious diseases. Current studies on disease transmission network mostly focus on scenarios in small, confined areas. We propose to construct disease transmission network using health status time series computed based on health insurance claims. We adopted Granger causality tests to identify potential links from the health status time series from all pairs between target groups and other individuals. We evaluated our approach by predicting future health care seeking activates for similar diseases based on past health care seeking activates of neighbors in the disease network. Compared to baseline models that use only personal historical data, including the estimated transmission network can improve prediction performance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:11Z (GMT). No. of bitstreams: 1
ntu-106-R04725008-1.pdf: 1789967 bytes, checksum: 0865560ad1915a2c58c0390d57b37620 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 III
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究問題 2
第二章 文獻探討 3
2.1 傳染病相關研究 3
2.2 疾病相似度 5
2.2.1 Latent Dirichlet Allocation (LDA) 5
2.3 疾病傳播路徑 9
2.4 預測模型 10
2.4.1 羅吉斯回歸模型 (Logistic Regression) 10
2.4.2 支持向量機 (Support Vector Machine,簡稱 SVM) 11
2.4.3 隨機森林 (Random Forest) 12
2.5 小結 12
第三章 實驗設計 13
3.1 實驗架構 13
3.2 資料來源 14
3.3 資料前處理 14
3.4 疾病主題萃取 16
3.5 格蘭傑因果關係檢定 18
3.6 預測感染事件 20
第四章 實驗結果 22
4.1 疾病主題數選擇 22
4.2 疾病傳播網路 23
4.3 預測得病 24
第五章 結論 29
5.1 結論 29
5.2 未來研究方向 29
參考文獻 30
附錄A 33
健保資料集健康狀況機率分佈 33
dc.language.isozh-TW
dc.subject健保申報資料zh_TW
dc.subject健康狀況時間序列zh_TW
dc.subject疾病傳播網路zh_TW
dc.subjectDisease Transmission Networken
dc.subjectHealth Status Time Seriesen
dc.subjectHealth Insurance Claimsen
dc.title使用全民健保申報資料建構疾病傳播網路zh_TW
dc.titleMining Disease Transmission Network in National Health Insurance Research Databaseen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦,余峻瑜
dc.subject.keyword疾病傳播網路,健康狀況時間序列,健保申報資料,zh_TW
dc.subject.keywordDisease Transmission Network,Health Status Time Series,Health Insurance Claims,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201704524
dc.rights.note有償授權
dc.date.accepted2017-12-29
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved