請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68068
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁(Fang-Jen Lee) | |
dc.contributor.author | Wen-Yuan Hsu | en |
dc.contributor.author | 許文苑 | zh_TW |
dc.date.accessioned | 2021-06-17T02:12:06Z | - |
dc.date.available | 2023-03-29 | |
dc.date.copyright | 2018-03-29 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2018-01-02 | |
dc.identifier.citation | Bandziulis RJ, Swanson MS, Dreyfuss G. (1989). RNA-binding proteins as developmental regulators. Genes Dev. 3, 431-437.
Bardwell L. (2005). A walk-through of the yeast mating pheromone response pathway. Peptides. 26, 339-350. Barrett L, Orlova M, Maziarz M, Kuchin S. (2012). Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell. 11, 119-128. Blankenship, J.R., and A.P. Mitchell. (2006). How to build a biofilm: a fungal perspective. Current opinion in microbiology. 9:588-594. Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. (1985). Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell. 41, 763-769. Brückner S, Köhler T, Braus GH, Heise B, Bolte M, Mösch HU. (2004). Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet. 46, 331-342. Brückner S, Mösch HU. (2012). Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev. 36, 25-58. Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR. (2009). Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A. 106, 18321-18326. Bumgarner SL, Neuert G, Voight BF, Symbor-Nagrabska A, Grisafi P, van Oudenaarden A, Fink GR. (2012). Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell. 45, 470-482. Buu LM, Jang LT, Lee FJ. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem. 279, 453-462. Chandarlapaty S, Errede B. (1998). Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol. 18, 2884-2891. Chang LC, Lee FJ. (2012). The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain. Nucleic Acids Res. 40, 1331-1344. Chou S, Lane S, Liu H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol. 26, 4794-4805. Coller J, Parker R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem.73, 861-890. Conlan RS, Tzamarias D. (2001). Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol. 309, 1007-1015. Cook JG, Bardwell L, Thorner J. (1997). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature. 390, 85-88. Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI. (2001). YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 29, 75-79. DeAngelo DJ, DeFalco J, Rybacki L, Childs G. (1995). The embryonic enhancer-binding protein SSAP contains a novel DNA-binding domain which has homology to several RNA-binding proteins. Mol Cell Biol. 15, 1254-1264. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev. 71, 282-294. Estruch F, Carlson M. (1990). Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 18, 6959-6964. Fribourg S, Gatfield D, Izaurralde E, Conti E. (2003). A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol. 10, 433-439. Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. (1999). Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol. 31, 103-116. Gagiano M, Bester M, van Dyk D, Franken J, Bauer FF, Pretorius IS. (2003). Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol Microbiol. 47, 119-134. Gilbert WV, Zhou K, Butler TK, Doudna JA. (2007). Cap-independent translation is required for starvation-induced differentiation in yeast. Science. 317, 1224-1227. Gietz RD, Sugino A. (1998). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74, 527-534. Gimeno CJ, Fink GR. (1994). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 14, 2100-2112. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol. 74, 6041-6052. Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol. 1996 Mar;19(6):1255-1263. Guo B, Styles CA, Feng Q, Fink GR. (2000). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A. 97, 12158-12163. Heise B, van der Felden J, Kern S, Malcher M, Brückner S, Mösch HU. (2010). The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryot Cell. 9, 514-531. Herrick D, Parker R, Jacobson A. (1990). Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol. 10, 2269-2284. Jang LT, Buu LM, Lee FJ. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem. 281, 29379-29390. Jiang R, Carlson M. (1997). The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol. 17, 2099-2106. Kaiser, C., S. Michaelis, and A. Mitchell. (1994). Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Kim TS, Kim HY, Yoon JH, Kang HS. (2004). Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol. 24, 9542-9556. Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM. (1999). A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol. 32, 1002-1012. Kuchin S, Vyas VK, Carlson M. (2002). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 22, 3994-4000. Lee FJ, Moss J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem. 268, 15080-15087. Jin R, Dobry CJ, McCown PJ, Kumar A. (2008). Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell. 19, 284-296. Liu H, Styles CA, Fink GR. (1993). Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 262, 1741-1744. Liu H, Styles CA, Fink GR. (1996). Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 144, 967-978. Lo WS, Dranginis AM. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 9, 161-171. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14, 953-961. Lorenz MC, Heitman J. (1998). Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics. 150, 1443-1457. Malcher M, Schladebeck S, Mösch HU. (2011). The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics. 187, 717-730. Martineau CN, Melki R, Kabani M. (2010). Swa2p-dependent clathrin dynamics is critical for Flo11p processing and 'Mat' formation in the yeast Saccharomyces cerevisiae. FEBS Lett. 584, 1149-1155. Mösch HU, Roberts RL, Fink GR. (1996). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 93, 5352-5356. Nett, J., and D. Andes. (2006). Candida albicans biofilm development, modeling a host-pathogen interaction. Current opinion in microbiology. 9:340-345. Pan X, Heitman J. (1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 19, 4874-4887. Pan X, Heitman J. (2000). Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol. 20, 8364-8372. Park YU, Hur H, Ka M, Kim J. (2006). Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot Cell. 5, 2120-2127. Paul J. Cullen, George F. Sprague, Jr. (2000). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A. 97, 13619-13624. Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. (2009). The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell. 20, 3101-3114. Roberts RL, Fink GR. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 15, 2974-2985. Robertson LS, Fink GR. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 95, 13783-13787. Robertson LS, Causton HC, Young RA, Fink GR. (2000). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A. 97, 5984-5988. Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem. 283, 222-230. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M. (1996). HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A. 93, 14503-14508. Rupp S, Summers E, Lo HJ, Madhani H, Fink G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257-1269. Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. (1995). Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 16, 699-708. Sherman F, Fink GR, Hicks JB. (1986). Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sheth U, Parker R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 300, 805-808. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Verstrepen KJ. (2008). FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 135, 726-737. Spingola M, Ares M Jr. (2000). A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol Cell. 6, 329-338. Tamaki H. (2007). Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng. 104, 245-250. Tucker M, Parker R. (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem. 69, 571-595. Van de Velde S, Thevelein JM. (2008). Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell. 7, 286-293. van Dyk D, Hansson G, Pretorius IS, Bauer FF. (2003). Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics. 165, 1045-1058. van Dyk D, Pretorius IS, Bauer FF. (2005). Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics. 169, 91-106. Vasudevan S, Peltz SW. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell. 7, 1191-1200. Vernet T, Dignard D, Thomas DY. (1987). A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 52, 225-233. Verstrepen KJ, Klis FM. (2006). Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 60, 5-15. Vinod PK, Venkatesh KV. (2007). Specificity of MAPK signaling towards FLO11 expression is established by crosstalk from cAMP pathway. Syst Synth Biol. 1, 99-108. Vitali J, Ding J, Jiang J, Zhang Y, Krainer AR, Xu RM. (2002). Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 30, 1531-1538. Vyas VK, Kuchin S, Berkey CD, Carlson M. (2003). Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol. 23, 1341-1348. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. (2002). Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A. 99, 5860-5865. Yang XJ, Seto E. (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 9, 206-218. Yuan YL, Fields S. (1991). Properties of the DNA-binding domain of the Saccharomyces cerevisiae STE12 protein. Mol Cell Biol. 11, 5910-5918. Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA. (2003). Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell. 113, 395-404. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68068 | - |
dc.description.abstract | 酵母菌核糖核酸結合蛋白Rbp1p最初被發現為會負向調控生長的因子。其結構包含三個核糖核酸識別基序(RRM)和兩個富含麩氨酸區域,在其碳端具有一個富含天門東氨酸、甲硫胺酸和脯氨酸的區域。實驗室之前已經發現在∑1278b基因背景下,剔除RBP1基因後會導致酵母菌對於洋菜膠的過度貼附與侵入性生長。最近實驗中發現,核糖核酸識別基序突變珠的貼附與侵入性生長能力皆會提高,尤其是在第三核糖核酸識別基序突變珠中。此現象不只在∑1278b基因背景下被發現,也可以在BY4741基因背景下發現,而BY4741因為FLO8基因變異,原本是不具有貼附與侵入性生長能力的。
在前人的研究中,發現Rbp1p的碳端有八個假定磷酸化位點,而其中的一個假定磷酸化位點-第637號位點,此位點上蘇氨酸之磷酸化會受到環境中葡萄糖的有無而改變,因此我們製造了可以專一辨認第637號位點上蘇氨酸之磷酸化會的抗體。我們也發現,相較於一般菌株,在第三核糖核酸識別基序突變珠中,第637號位點上蘇氨酸之磷酸化會升高。但當我們改變第637號位點上蘇氨酸之磷酸化後,第三核糖核酸識別基序突變珠的貼附與侵入性生長能力並沒有顯著影響,說明了單一位點的磷酸化並不足以影響其貼附與侵入性生長能力。但我們發現這八個假定磷酸化位點可以共同調控第三核糖核酸識別基序突變珠的貼附與侵入性生長能力;此外,我們也發現剔除SNF1和BCY1基因後,第三核糖核酸識別基序突變珠的貼附與侵入性生長能力皆會減弱。 在先前的微陣列分析中,發現FLO基因家族的信使核糖核酸表現量在第三核糖核酸識別基序突變珠中會提高。信使核糖核酸表現量提高的FLO基因包含FLO1、FLO9、FLO10和FLO11,這些FLO基因會調控酵母菌的菌絲生長,包含絮凝作用、貼附能力和侵入性生長。我們發現這些FLO基因之信使核糖核酸表現量的提高和菌絲生長之間有正相關,不過FLO基因的轉錄並不能完全反映在表現型上,所以FLO基因的轉譯還需更進一步的研究。 | zh_TW |
dc.description.abstract | Rbp1p, as a RNA binding protein, was first identified as a negative growth regulator in Saccharomyces cerevisiae. Protein composition of Rbp1p contains three RNA recognition motifs (RRMs), two glutamine-rich regions, and one asparagine-methionine-proline-rich (NMP) region in the C terminus. Our previous studies have shown that deletion of RBP1 resulting in a hyper ager-invasive growth in ∑1278b strain. Recently, we had found that over-expressing Rbp1p-RRM mutants, especially Rbp1p-rrm3, into yeast induced a hyper-invasion growth phenotype. This hyper-invasion growth phenotype had not only been found in ∑1278b strain but also in BY4741 strain, which had no invasive ability because of its flo8-mutation.
We had previously predicted eight putative phosphorylation sites of Rbp1p, which mainly are located at C-terminus. According to the mass-spectrometry-based results, phosphorylation at threonine 637 (T637) would change in response to glucose deprivation. We generated an antibody specifically recognizing T637 phosphorylation, and observed a high phosphorylation level at T637 when over-expressing Rbp1p-rrm3 into yeast. However, the invasion phenotype of Rbp1p was unchanged regardless of T637 phosphorylation state. It indicated that T637 phosphorylation is not sufficient to regulate the Rbp1p-dependant invasive ability. Here we showed that eight putative phosphorylation sites of Rbp1p partially participated in regulating the Rbp1p-dependant invasive ability. Furthermore, the deletion of SNF1 and BCY1 decreased the Rbp1p-rrm3-induced hyper-invasion. According to previous microarray results, we found that the mRNA levels of FLO genes family increased when over-expressing Rbp1p-rrm3 as compared to Rbp1p. The increased FLO genes were FLO1, FLO9, FLO10 and FLO11. These FLO genes were involved in filamentous growth in Saccharomyces cerevisiae, such as flocculation, adhesion and invasion. Here we showed that most increasing mRNA levels of these FLO genes were consistent to the filamentous growth relative phenotypes; however, transcription was not sufficient to reflect these phenotypes. The translation of these FLO genes are needed to be further investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:12:06Z (GMT). No. of bitstreams: 1 ntu-106-R03448011-1.pdf: 4084912 bytes, checksum: 2410c459e846d5c683f5d7473cffa4be (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 中文摘要 III Abstract V Table of Contents VII Introduction 1 Materials and Methods 11 Results 19 Part I. To investigate the possible factors involved in RBP1-rrm3 mutant-induced filamentous growth. 19 Part II. To study how over-expression of RBP1-rrm3-S8 mutant induces FLO genes expression. 24 Discussion 26 Figures 29 Figure 1. Construct of RBP1-rrm mutants and putative phosphorylation sites on Rbp1p. 29 Figure 2. RBP1-rrm mutants induced hyper- invasive growth in Σ1278b and BY4741. 30 Figure 3. The phosphorylation of Rbp1p-T637 may be related to the invasive growth in Σ1278b. 31 Figure 4. The phosphorylation of Rbp1p-T637 may be related to the invasive growth in BY4741. 32 Figure 5. The RBP1-rrm3 mutant-induced hyper-invasive growth is not dependent on T637 phosphorylation. 33 Figure 6. The RBP1-rrm3 mutant-induced hyper-invasive growth is dependent on snf1Δ and byc1Δ. 34 Figure 7. RBP1-rrm3 mutant and T637 phosphorylation have joint contribution to RBP1-rrm3 mutant-induced hyper-invasive growth in byc1Δ. 35 Figure 8. T637 phosphorylation does not have contribution to RBP1-rrm3 mutant-induced hyper-flocculation growth. 37 Figure 9. RBP1-rrm3 mutant and S8 phosphorylation have joint contribution to RBP1-rrm3 mutant-induced hyper-invasive growth. 38 Figure 10. RBP1-rrm3 mutant and S8 phosphorylation have joint contribution to RBP1-rrm3 mutant-induced hyper-flocculation growth in snf1Δ. 40 Figure 11. The flocculation and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in rbp1Δ. 41 Figure 12. The flocculation and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in snf1Δ. 43 Figure 13. The flocculation and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in bcy1Δ. 45 Figure 14. The invasion on rich in nutrients plate and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in snf1Δ. 47 Figure 15. The invasion on SCD plate and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in snf1Δ. 49 Figure 16. The invasion on rich in nutrients plate and mRNA level of FLO genes when overexpressing RBP1-rrm3-S8 mutant in bcy1Δ. 51 Appendix 53 Appendix 1. Over-expression of RBP1-rrm3 enhanced mRNA level of FLO genes under BY4741 background. 53 Appendix 2. T637 phosphorylation has slight contribution to hyper-invasive growth in rbp1∆ and snf1Δ. 54 Appendix 3. S8 phosphorylation has slight contribution to hyper-invasive growth in snf1Δ. 56 Tables 58 Table 1. Yeast strains used in this study 58 Table 2. Primers used in this study 59 Table 3. Plasmids used in this study 62 Table 4. Antibodies used in this study 63 Reference 64 | |
dc.language.iso | en | |
dc.title | 探討酵母菌核糖核酸蛋白Rbp1p核糖核酸識別基序突變珠對絲狀生長之調控 | zh_TW |
dc.title | Characterization for the Function of RNA Recognition Motif 3 Mutant of RNA Binding Protein Rbp1p | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),譚婉玉(Woan-Yuh Tarn),張典顯(Tien-Hsien Chang),林敬哲(Jing-Jer Lin) | |
dc.subject.keyword | 酵母菌核糖核酸結合蛋白,酵母菌的菌絲生長,絮凝作用,貼附能力,侵入性生長, | zh_TW |
dc.subject.keyword | Rbp1p,filamentous growth,flocculation,adhesion,invasion,FLO gene, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201800001 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-01-02 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。