請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68041完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管傑雄(Chieh-Hsiung Kuan) | |
| dc.contributor.author | Jia-Hao Ye | en |
| dc.contributor.author | 葉家豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:11:39Z | - |
| dc.date.available | 2020-02-26 | |
| dc.date.copyright | 2018-02-26 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2018-01-08 | |
| dc.identifier.citation | [1]Modeling ProjectionPrinting of PositivePhotoresists ,FREDERICK H. DILL, SENIOR MEMBER, IE:I;E, ANDREWR.NEUREUTHER, MEMBER, IEEE, JAMES A. TUTTLE, AND EDWARDJOHNWALKER, MEMBER, IEEE
[2]Three-Dimensional Resist Process Simulator PEACE (Photo and Electron Beam Lithography Analyzing Computer Engineering System) Yoshihiko Hirai, Sadafumi Tomida, Kazushi Ikeda, Masaru Sasago, Masayki Endo, Sigeru Hayama, and Noboru Nomura ,IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 6, JUNE 1991 [3] R.J. Boiko and B.J. Hughes ,“Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technoi. B 8 (6), Nov/Dec 1990 [4] Xiaokang Huang, Greg Bazan, and Gary H. Bernstein,“New technique for computation and challenge [5]J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in: Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995. [6] R. C. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory,” in: Proc. IEEE Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43, 1995. [7] Vitor R. Manfrinato ,Jianguo Wen, Lihua Zhang “Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function ,” Nano Lett. 2014, 14, 4406−4412 [8] Bo Wu and Andrew R. Neureuther “Energy deposition and transfer in electron-beam lithography ,” J. Vac. Sci. Technol. B 19, Nov/Dec 2001 [9] Ananthan Raghunathana and John G. Hartley ,“Influence of secondary electrons in high- energy electron beam lithography,” J. Vac. Sci. Technol. B, Vol. 31, No. 1, Jan/Feb 2013 [10] R.J. Boiko and B.J. Hughes ,“Quantitative lithographic performance of proximity correction for electron beam lithography,” J. Vac. Sci. Technoi. B 8 (6), Nov/Dec 1990 [11] Xiaokang Huang, Greg Bazan, and Gary H. Bernstein,“New technique for computation and challenges for electron-beam lithography” ,J. Vac. Sci, Technol. B 11(6), Nov/Dec 1993 [12] Jian Zhang, Mina Fouad, Mustafa Yavuz, ann Bo Cui, “Charging effect reduction in electron beam lithography with nA beam current” ,Microelectronic Engineering 88 2196–2199, 2011 [13] K. M. Satyalakshmi, A. Olkhovets, M. G. Metzler, C. K. Harnett, D. M. Tanenbaum and H. G. Craighead, “Charge induced pattern distortion in low energy electron beam lithography” ,J. Vac. Sci. Technol. B, Vol. 18, No. 6, 2000 [14]Stepanova, Maria, Dew, Steven “Nanofabrication - Techniques and Principles ”,Springer | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68041 | - |
| dc.description.abstract | 微影技術是積體電路IC製程的關鍵技術,也是讓摩爾定律能夠繼續前進的重要推手,半導體工業之所以能夠快速發展,晶片能夠越做越小且價格越來越便宜都與微影技術的發展息息相關,一直以來光學微影是半導體製程的主流,其優點為可大量生產且速度快成本低廉,相較於其他微影技術有很大的優勢,然而隨著晶片越來越小傳統的光學微影技術已經面臨了極限,需要新的微影技術研究,目前電子束微影(E-beam, Electron Beam Lithography)及極紫外光微影(EUV, Extreme Ultraviolet Lithography)是未來顯影技術研究的主流。
隨著半導體製程的發展,許多重要的固態元件得以將尺度縮小且提高效能,諸如:天線元件與近日炙手可熱的3-D元件 –多閘二極體(FIN-FET)等,以上元件皆需要極高精準度的顯影圖形品質才能確保天線陣列訊號的穩定性,與漏電流的產生;如何製作出精準而微小的奈米結構左右著整體元件的穩定性與效能。 本論文主要研究如何改善電子束微影中的鄰近效應。為了改善鄰近效應我們使用了計算機模擬光阻顯影的過程;有別於傳統方法-格點移除法(Cell-removal Method),一種透過反覆地進行嘗試錯誤法的方法;我們提出兩種假設,所有顯影路徑中必定存在一關鍵顯影路徑、將顯影路徑問題轉換成圖論問題,且利用粒子群智能式最佳化演算法(Particle Swarm Intelligence Optimism Method),是一種模仿群居動物行為趨近最佳結果的演算法最為最佳化策略,透過以上兩種假設加速演算流程。 本論文採用U型圖形的開口深度做為實驗的最佳化指標,製作出極為精準的U型結構,並將圖形誤差由51%降低到3%,有望能改善傳統U-shape split-ring resonator的功率與訊號品質等。 | zh_TW |
| dc.description.abstract | Lithography is the key technology in integrated circuits manufacturing process, and the improvement of it is the main reason that Moore's law can keep going. The rapid development of semiconductor industry and chips can become smaller and cheaper are closely related to the progress of lithography.For a long time, optical lithography is the mainstream in semiconductor industry, it is superior to other lithography method because of its mass production with high speed and low cost. However, with chips size become smaller and smaller optical lithography has reached its limit, it is necessary to investigate a new method for lithography, E-beam (Electron Beam Lithography) and EUV (Extreme Ultraviolet Lithography) are the main research direction lithography method in the future.
As the development of semiconductor process, many important solid state device could be smaller and more efficient. For example: attena device and current trend of the 3-D device FIN-FET. All the device mentioned above need extremely high accurate and high developing quality to make sure that the stability of the attena array and avoid leakage current in the FIN-FET. The stability and efficiency depends on how to fabricate the pattern with high quality and extremely small size. In this thesis, we focus on how to improve the proximity effect in the e-beam lithography. We used the computer to simulate the developing process of the resist for improving proximity effect. The method we used is different from the traditional method including finding-all-possible method and cell-removal method, this two method take too much time because of the repeated trial-and-error process. we have proposed two hypothesis, one is there exists a critical path in developing environment, another one is we transform the developing path problem into a graph theory problem.Then we apply the particle swarm intelligence optimism which mimics the natural collective behavior of animals to reduce the computational cost. In this paper, we employ the depth of U-shape pattern to be a index of optimism level, and we have fabricated the U-shape structure with high quality and accuracy. It is helpful for improving the power and quality of signals U-shape split-ring resonator est. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:11:39Z (GMT). No. of bitstreams: 1 ntu-106-R04945033-1.pdf: 2914616 bytes, checksum: 9244dbb1661e99795e97b48d084ef751 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 II 致謝 III 摘要 V Abstract VI 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 概論 1 1.1.前言 1 1.2研究動機 2 1.3章節概要 3 第二章 電子束微影製程理論探討 4 2.1電子散射原理 4 2.1.1電子散射 4 2.1.2鄰近效應與電荷累積 5 2.1.3電子束微影 5 2.2 鄰近效應之修正方法 7 2.2.1 格點移除法(Cell-removal Method) 7 2.2.2 群體智能式修正方法之計算方法 7 2.2.3修正方法之最佳化策略 7 第三章 電子束微影鄰近效應之修正方法與製程 11 3.1 電子束低溫短顯影製程與量測機台介紹 11 3.1.1 電子束微影系統 11 3.1.2 電子槍蒸鍍系統 12 3.1.3 反應式離子蝕刻系統 (Reactive Ion Etching, RIE) 13 3.1.4 冷凍循環水槽 13 3.1.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 14 3.1.6聚焦離子束(Focus Ion Beam, FIB) 15 3.2 製程步驟與參數 16 3.2.1電子束微影製程技術 16 3.2.2圖形轉移技術 22 3.3 修正方法之短顯影單點實驗資料庫建構 23 3.3.1 短顯影時間條件下的單點實驗 23 3.3.2溫度降低對顯影機制的影響 24 3.3.3不同溫度下的單點實驗 25 3.4短顯影速率模型 27 3.4.1 短顯影速率模型推導 27 3.4.2 常溫模型擬合結果與參數分析 30 3.4.3 變溫條件下模型擬合結果與參數分析 32 3.4.4 鄰近效應影響範圍R2討論 34 3.5 短時間顯影模型之基本運用 35 3.5.1短顯影散射模型運用於奈米線圖形 35 3.6 修正方法之驗證實驗設計及量測方法 37 3.6.1 整體實驗Pattern 設計 37 3.6.2 實驗拍攝結果之量測方法 37 3.6.2 實驗圖形之誤差定義 38 第四章 實驗數據結果與討論 39 4.1 不同圖形之優化結果 39 4.1.1 電子束顯影之目標圖形 39 4.2實驗結果與圖形誤差率之統計 42 4.2.1 圖形優化之實驗結果 42 4.3劑量分佈做倍率平移之結果 43 第五章 結論與未來展望 44 5.1 結論 44 5.2未來研究方向 44 參考文獻 45 圖目錄 圖2.1.3電子束微影製程示意圖[4] 6 圖2.2.1 Dijkstra演算法的最短路徑問題圖 7 圖2.3.1關鍵顯影路徑示意圖 9 圖3.1.1 ELS-7000機台圖 12 圖3.1.2電子束蒸鍍示意圖 12 圖3.1.3冷凍循環水槽機台圖 13 圖3.1.4 SEM 電子槍示意圖 14 圖3.1.5 Nova-600i FIB 機台圖 15 圖3.2.1 ZEP520A分子結構圖 16 圖3.3.1單點大小變化圖 23 圖3.3.2對比度示意圖(a)曲線圖(b)側壁圖 25 圖3.3.3 不同溫度單點實驗結果圖(a)20°C(b)10°C(c)0°C(d)-10°C 26 圖3.4.1顯影速率與能量關係圖 28圖3.4.2不同劑量模型擬合圖 30 圖3.4.3擬合參數圖(a)短顯影區範圍(b)特徵時間常數(c)特徵顯影速率 32 圖3.4.4不同溫度擬合結果圖 33 圖3.4.5變溫擬合參數(a)短顯影區範圍(b)特徵時間常數(c)特徵顯影速率 33 圖3.4.4鄰近效應範圍(a)示意圖(b)計算圖 34 圖3.5.1 MATLAB模擬圖 (a)點距較遠(b)點距較近成為線 35 圖3.6.1實驗SEM拍攝圖 36 圖3.6.2 U形圖之開口深度示意圖 38 圖4.1.1(a) U形目標圖形(b) L形目標圖形 39 圖4.1.2 U形圖模擬結果圖 40 圖4.1.3 L形圖模擬結果圖 41 圖4.2.1最佳化指標誤差統計圖 42 圖4.3.2倍率平移過程圖 43 表目錄 表3.2.1 RIE蝕刻參數表 22 表3.4.2不同劑量R Square值 30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小線寬圖形 | zh_TW |
| dc.subject | 圖形轉移 | zh_TW |
| dc.subject | 最短路徑問題 | zh_TW |
| dc.subject | 電子散射 | zh_TW |
| dc.subject | 粒子群最佳化法 | zh_TW |
| dc.subject | 正電子阻劑 | zh_TW |
| dc.subject | 鄰近效應修正 | zh_TW |
| dc.subject | 電子束微影 | zh_TW |
| dc.subject | 顯影速率 | zh_TW |
| dc.subject | particle swarm optimization | en |
| dc.subject | proximity effect correction | en |
| dc.subject | positive E-beam resists | en |
| dc.subject | developing rate | en |
| dc.subject | electron scattering | en |
| dc.subject | critical path-finding problem | en |
| dc.subject | E-beam lithography | en |
| dc.subject | small line width pattern | en |
| dc.subject | pattern transfer | en |
| dc.title | 發展電子束微影鄰近效應之修正方法 | zh_TW |
| dc.title | Development of Proximity Effect Correction Method for E-Beam Lithography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳肇欣(Chao-Hsin Wu),林瑞明(Ray-Ming Lin),徐大正,孫建文(Kien-Wen Sun) | |
| dc.subject.keyword | 電子束微影,鄰近效應修正,正電子阻劑,顯影速率,電子散射,最短路徑問題,粒子群最佳化法,小線寬圖形,圖形轉移, | zh_TW |
| dc.subject.keyword | E-beam lithography,proximity effect correction,positive E-beam resists,developing rate,electron scattering,critical path-finding problem,particle swarm optimization,small line width pattern,pattern transfer, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201704474 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
