請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6803
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建錦 | |
dc.contributor.author | Pi-Hua Chuang | en |
dc.contributor.author | 莊璧華 | zh_TW |
dc.date.accessioned | 2021-05-17T09:18:27Z | - |
dc.date.available | 2017-07-19 | |
dc.date.available | 2021-05-17T09:18:27Z | - |
dc.date.copyright | 2012-07-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-16 | |
dc.identifier.citation | Agichtein, Eugene and Gravano, Luis, ' Snowball: extracting relations from large plain-text collections,' In Proceedings of the5th ACM conference on Digital libraries, 85-94, (2000).
Banko, Michele, Cafarella, Michael J., Soderland, Stephen, Broadhead, Matt and Etzioni, Oren, 'Open information extraction from the web,' In Proceedings of the 20th International Joint Conference on Artifical Intelligence, 2670-2676, (2007). Banko, Michele and Etzioni, Oren, 'The tradeoffs between open and traditional relation extraction,' In Proceedings of the 46th Annual Meeting on Association for Computational Linguistics on Human Language Technoloies, 28-36, (2008). Berger, Adam L., Pietra, Vincent J. Della and Pietra, Stephen A. Della, 'A maximum entropy approach to natural language processing,' Comput. Linguist., 22, 39-71, (1996). Chen, Chien Chin and Chen, Meng Chang, 'TSCAN: A content anatomy approach to temporal topic summarization,' IEEE Transactions on Knowledge and Data Engineering, 24, 170-183, (2012). Chieu, Hai and Ng, Hwee, 'A maximum entropy approach to information extraction from semi-structured and free text,' In Proceedings of the 18th National Conference on Artificial intelligence, 786-791, (2002). Christensen, Janara, Mausam, Soderland, Stephen and Etzioni, Oren, 'Semantic role labeling for open information extraction,' In Proceedings of the NAACL HLT 2010 1st International Workshop on Formalisms and Methodology for Learning by Reading, 52-60, (2010). Culotta, Aron and Sorensen, Jeffrey, 'Dependency tree kernels for relation extraction,' In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, 423-429, (2004). Etzioni, Oren, Fader, Anthony, Christensen, Janara, Soderland, Stephen and Mausam, 'Open information extraction: the second generation,' In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 3-10, (2011). Fader, Anthony, Soderland, Stephen and Etzioni, Oren, 'Identifying relations for open information extraction,' In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 1535-1545, (2011). Feng, Ao and Allan, James, 'Finding and linking incidents in news,' In Proceedings of the 16th ACM International Conference on Information and Knowledge Management, 821-830, (2007). Feng, Haodi, Chen, Kang, Deng, Xiaotie and Zheng, Weimin, 'Accessor variety criteria for Chinese word extraction,' Comput. Linguist., 30, 75-93, (2004). Han, Jiawei, and Kamber, Micheline, Data mining Concepts and Techniques: Morgan Kaufmann Publishers, 2nd edn., 2006. Hatzivassiloglou, Vasileios and Weng, Wubin, 'Learning anchor verbs for biological interaction patterns from published text articles,' International Journal of Medical Informatics, 67, 19-23, (2002). Hirano, Toru, Asano, Hisako, Matsuo, Yoshihiro and Kikui, Genichiro, 'Recognizing relation expression between named entities based on inherent and context-dependent features of relational words,' In Proceedings of the 23rd International Conference on Computational Linguistics: Posters, 409-417, (2010). Hirano, Toru, Matsuo, Yoshihiro and Kikui, Genichiro, 'Detecting semantic relations between named entities in text using contextual features,' In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, 157-160, (2007). Huang, Shu-Ling, Chung, You-Shan and Chen, Keh-Jiann, 'E-HowNet: the expansion of HowNet,' In Proceedings of the 1st National HowNet Workshop, 10-22, (2008). Jindal, Nitin and Liu, Bing, 'Opinion spam and analysis,' In Proceedings of the international conference on Web search and web data mining, 219-230, (2008) Kambhatla, Nanda, 'Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations,' In Proceedings of the 42nd Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, 178-181, (2004). Kohavi, Ron, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' In Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1137-1143, (1995). Lafferty, John D., McCallum, Andrew and Pereira, Fernando C. N., 'Conditional random fields: probabilistic models for segmenting and labeling sequence data,' In Proceedings of the 18th International Conference on Machine Learning, 282-289, (2001). Li, Wenjie, Zhang, Peng, Wei, Furu, Hou, Yuexian and Lu, Qin, 'A novel feature-based approach to Chinese entity relation extraction,' In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, 89-92, (2008). Ling, Charles and Li, Chenghui, 'Data Mining for Direct Marketing: Problems and Solutions,' In Knowledge Discovery and Data Mining, 73-79, (1998). Ling, Goh Chooi, Asahara, Masayuki and Matsumoto, Yuji, 'Chinese unknown word identification using character-based tagging and chunking,' In Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, 197-200, (2003). Manning, Chris and Schutze, Hinrich, Foundations of statistical natural language processing: MIT Press, Cambridge, Massachusetts, 1st edn., 1999. Manning, Christopher D., Raghavan, Prabhakar and Schutze, Hinrich, Introduction to information retrieval: Cambridge University Press, Cambridge, U.K, 2nd edn., 2008. Mitchell, T.M., Machine learning: McGraw-Hill, New York, 1st edn., 1997. Nallapati, Ramesh, Feng, Ao, Peng, Fuchun and Allan, James, 'Event threading within news topics,' In Proceedings of the 13th ACM International Conference on Information and Knowledge Management, 446-453, (2004). Pantel, Patrick and Pennacchiotti, Marco, 'Espresso: leveraging generic patterns for automatically harvesting semantic relations, 'In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, 113-120, (2006). Vernon, G.M., Human interaction: an introduction to sociology: Ronald Press Co., New York, 1st edn., 1965. Wang, Yuan-Kai, Chen, Yi-Shiou, and Hsu, Wen-Lian, 'Empirical study of Mandarin Chinese discourse analysis: an event-based approach,' In Proceedings of 10th IEEE International Conference on Tools with Artificial Intelligence, 466-473, (1998). Zelenko, Dmitry, Aone, Chinatsu and Richardella, Anthony, ' Kernel methods for relation extraction, ' The Journal of Machine Learning Research, 3, 1083-1106, (2003). Zhou, Guodong, Qian, Longhua and Fan, Jianxi, 'Tree kernel-based semantic relation extraction with rich syntactic and semantic information,' Information Sciences, 180, 1313-1325, (2010). Zhu, Jun, Nie, Zaiqing, Liu, Xiaojiang, Zhang, Bo and Wen, Ji-Rong, 'StatSnowball: a statistical approach to extracting entity relationships,' In Proceedings of the 18th International Conference on World Wide Web, 101-110, (2009). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6803 | - |
dc.description.abstract | 由於Web2.0的發展,網際網路使用者處於資訊爆炸的時代。在面對大量文章的時候,先找出主題文件中人與人之間的互動關係將有助於閱讀者建立主題文件的背景架構以及對內容有初步的理解。為了找出人與人之間的互動關係,我們需要一個方法先辨別文字片段中是否有互動關係存在,接著再使用資訊擷取的演算法分析人物之間的互動關係,並且將同一主題文章中的人物建立其互動關係網路。 在這次的研究當中,我們將互動關係辨識定義成分類問題。結合句子中語法、語意和語境的資訊,設計出十九個語言的特徵來辨別文字片段當中是否有互動關係存在。實驗的結果顯示我們設計的互動關係辨識的方法是有效的,也優於其他著名的開放式資訊擷取系統。 | zh_TW |
dc.description.abstract | Discovering the interactions between the persons mentioned in a set of topic documents can help readers construct the background of the topic and facilitate document comprehension. To discover person interactions, we need a detection method that can identify text segments containing information about the interactions. Information extraction algorithms then analyze the segments to extract interaction tuples and construct an interaction network of topic persons. In this paper, we define interaction detection as a classification problem. The proposed interaction detection method, called FISER, exploits nineteen features covering syntactic, context-dependent, and semantic information in text to detect inter-sentential and
iv intra-sentential interactive segments in topic documents. Empirical evaluations demonstrate that FISER outperforms many well-known open IE methods on identifying interactive segments in topic documents. In addition, the precision, recall and F1-score of the best feature combination are 72.6%, 55.6%, and 61.9% respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:18:27Z (GMT). No. of bitstreams: 1 ntu-101-R99725008-1.pdf: 540441 bytes, checksum: bbbac668a01568a9d92955618cfd0246 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝.............................................. i
論文摘要........................................... ii THESIS ABSTRACT.................................. iii Table of Contents................................ v List of Tables................................... vi List of Figures.................................. vii 1. Introduction.................................. 1 2. Related Works................................. 4 2.1 Relation Extraction.......................... 4 2.2 Open IE...................................... 7 3. Methodology................................... 10 3.1 Candidate Segment Generation................. 11 3.2 Interactive Segment Recognizer............... 14 3.3 Feature Extraction........................... 15 4. Performance Evaluation........................ 20 4.1 Data Corpus and Evaluation Metrics........... 20 4.2 The Performance of the Features.............. 24 4.3 The Best Combination of the Features......... 26 4.4 Comparison with Open IE Methods.............. 29 4.5 The Effectiveness of the Features............ 34 5. Conclusion.................................... 38 References....................................... 40 | |
dc.language.iso | en | |
dc.title | 主題文件內人際互動關係擷取之研究 | zh_TW |
dc.title | FISER: An Effective Recognizer for Detecting Topic-dependent Interactive Relation | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 戴碧如,陳孟彰,李正帆 | |
dc.subject.keyword | 資訊擷取,互動關係擷取,開放式資訊擷取, | zh_TW |
dc.subject.keyword | Information extraction,Relation detection,Open IE, | en |
dc.relation.page | 43 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-07-16 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 527.77 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。