Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰(Pi-Tai Chou)
dc.contributor.authorTzu-Chieh Linen
dc.contributor.author林子傑zh_TW
dc.date.accessioned2021-06-17T02:11:36Z-
dc.date.available2028-08-31
dc.date.copyright2018-02-26
dc.date.issued2017
dc.date.submitted2018-01-09
dc.identifier.citationCHAPTER 1
1. Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14706-14709.
2. Graves, D.; Jankus, V.; Dias, F. B.; Monkman, A. Photophysical Investigation of the Thermally Activated Delayed Emission from Films of M-Mtdata:Pbd Exciplex. Adv. Funct. Mater. 2014, 24, 2343-2351.
3. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234-238.
4. Lee, J.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. Oxadiazole- and Triazole-Based Highly-Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. J. Mater. Chem. C 2013, 1, 4599-4604.
5. Lu, J.; Zheng, Y.; Zhang, J. Rational Design of Phenoxazine-Based Donor-Acceptor-Donor Thermally Activated Delayed Fluorescent Molecules with High Performance. Phys. Chem. Chem. Phys. 2015, 17, 20014-20020.
6. Luo, J.; Xie, G.; Gong, S.; Chen, T.; Yang, C. Creating a Thermally Activated Delayed Fluorescence Channel in a Single Polymer System to Enhance Exciton Utilization Efficiency for Bluish-Green Electroluminescence. Chem. Commun. 2016, 52, 2292-2295.
7. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. Nat. Photon. 2014, 8, 326-332.
8. Fan, C.; Duan, C.; Wei, Y.; Ding, D.; Xu, H.; Huang, W. Dibenzothiophene-Based Phosphine Oxide Host and Electron-Transporting Materials for Efficient Blue Thermally Activated Delayed Fluorescence Diodes through Compatibility Optimization. Chem. Mater. 2015, 27, 5131-5140.
9. Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence Oleds. Angew. Chem. Int. Ed. 2014, 53, 6402-6406.
10. Li, J.; Ding, D.; Tao, Y.; Wei, Y.; Chen, R.; Xie, L.; Huang, W.; Xu, H. A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. Adv. Mater. 2016, 28, 3122-3130.
11. Duan, C.; Li, J.; Han, C.; Ding, D.; Yang, H.; Wei, Y.; Xu, H. Multi-Dipolar Chromophores Featuring Phosphine Oxide as Joint Acceptor: A New Strategy toward High-Efficiency Blue Thermally Activated Delayed Fluorescence Dyes. Chem. Mater. 2016, 28, 5667-5679.
12. Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer Oled Emitters. Adv. Mater. 2013, 25, 3707-3714.
13. Li, X.-L.; Xie, G.; Liu, M.; Chen, D.; Cai, X.; Peng, J.; Cao, Y.; Su, S.-J. High-Efficiency Woleds with High Color-Rendering Index Based on a Chromaticity-Adjustable Yellow Thermally Activated Delayed Fluorescence Emitter. Adv. Mater. 2016, 28, 4614-4619.
14. Nobuyasu, R. S.; Ren, Z.; Griffiths, G. C.; Batsanov, A. S.; Data, P.; Yan, S.; Monkman, A. P.; Bryce, M. R.; Dias, F. B. Rational Design of Tadf Polymers Using a Donor–Acceptor Monomer with Enhanced Tadf Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States. Adv. Opt. Mater. 2016, 4, 597-607.
15. Santos, P. L.; Ward, J. S.; Data, P.; Batsanov, A. S.; Bryce, M. R.; Dias, F. B.; Monkman, A. P. Engineering the Singlet-Triplet Energy Splitting in a Tadf Molecule. J. Mater. Chem. C 2016, 4, 3815-3824.
16. Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; Murata, Y.; Adachi, C. Purely Organic Electroluminescent Material Realizing 100% Conversion from Electricity to Light. Nat. Commun. 2015, 6, 8476.
17. Jeon, Y. P.; Kim, K. S.; Lee, K. K.; Moon, I. K.; Choo, D. C.; Lee, J. Y.; Kim, T. W. Blue Phosphorescent Organic Light-Emitting Devices Based on Carbazole/Thioxanthene-S,S-Dioxide with a High Glass Transition Temperature. J. Mater. Chem. C 2015, 3, 6192-6199.
18. Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, S.-S.; Yu, E.; Lee, J. Y. Correlation of Molecular Structure with Photophysical Properties and Device Performances of Thermally Activated Delayed Fluorescent Emitters. J. Phys. Chem. C 2016, 120, 2485-2493.
19. Ward, J. S.; Nobuyasu, R. S.; Batsanov, A. S.; Data, P.; Monkman, A. P.; Dias, F. B.; Bryce, M. R. The Interplay of Thermally Activated Delayed Fluorescence (Tadf) and Room Temperature Organic Phosphorescence in Sterically-Constrained Donor-Acceptor Charge-Transfer Molecules. Chem. Commun. 2016, 52, 2612-2615.
20. Komatsu, R.; Sasabe, H.; Seino, Y.; Nakao, K.; Kido, J. Light-Blue Thermally Activated Delayed Fluorescent Emitters Realizing a High External Quantum Efficiency of 25% and Unprecedented Low Drive Voltages in Oleds. J. Mater. Chem. C 2016, 4, 2274-2278.
21. Wu, K.; Zhang, T.; Zhan, L.; Zhong, C.; Gong, S.; Jiang, N.; Lu, Z.-H.; Yang, C. Optimizing Optoelectronic Properties of Pyrimidine-Based Tadf Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off. Chem. Eur. J. 2016, 22, 10860-10866.
22. Liu, W.; Zheng, C.-J.; Wang, K.; Chen, Z.; Chen, D.-Y.; Li, F.; Ou, X.-M.; Dong, Y.-P.; Zhang, X.-H. Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices. ACS Appl. Mater. Interfaces 2015, 7, 18930-18936.
23. Mei, L.; Hu, J.; Cao, X.; Wang, F.; Zheng, C.; Tao, Y.; Zhang, X.; Huang, W. The Inductive-Effect of Electron Withdrawing Trifluoromethyl for Thermally Activated Delayed Fluorescence: Tunable Emission from Tetra- to Penta-Carbazole in Solution Processed Blue Oleds. Chem. Commun. 2015, 51, 13024-13027.
24. Tang, C.; Yang, T.; Cao, X.; Tao, Y.; Wang, F.; Zhong, C.; Qian, Y.; Zhang, X.; Huang, W. Tuning a Weak Emissive Blue Host to Highly Efficient Green Dopant by a Cn in Tetracarbazolepyridines for Solution-Processed Thermally Activated Delayed Fluorescence Devices. Adv. Opt. Mater. 2015, 3, 786-790.
25. Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G.; Wang, Y. Highly Efficient Long-Wavelength Thermally Activated Delayed Fluorescence Oleds Based on Dicyanopyrazino Phenanthrene Derivatives. ACS Appl. Mater. Interfaces 2017, 9, 9892-9901.
26. Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915-1016.
27. Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
28. Dias, F., B.; Penfold, T., J.; Monkman, A., P. Photophysics of Thermally Activated Delayed Fluorescence Molecules. Methods Appl. Fluoresc. 2017, 5, 012001.
29. Ji, L.; Griesbeck, S.; Marder, T. B. Recent Developments in and Perspectives on Three-Coordinate Boron Materials: A Bright Future. Chem. Sci. 2017, 8, 846-863.
30. Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 %. Angew. Chem. Int. Ed. 2015, 54, 15231-15235.
31. Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Design and Synthesis of Efficient Blue Thermally Activated Delayed Fluorescence Molecules Bearing Triarylborane and 10,10-Dimethyl-5,10-Dihydrophenazasiline Moieties. Tetra. Lett. 2016, 57, 4914-4917.
32. Liu, Y.; Xie, G.; Wu, K.; Luo, Z.; Zhou, T.; Zeng, X.; Yu, J.; Gong, S.; Yang, C. Boosting Reverse Intersystem Crossing by Increasing Donors in Triarylboron/Phenoxazine Hybrids: Tadf Emitters for High-Performance Solution-Processed Oleds. J. Mater. Chem. C 2016, 4, 4402-4407.
33. Numata, M.; Yasuda, T.; Adachi, C. High Efficiency Pure Blue Thermally Activated Delayed Fluorescence Molecules Having 10h-Phenoxaborin and Acridan Units. Chem. Commun. 2015, 51, 9443-9446.
34. Park, I. S.; Numata, M.; Adachi, C.; Yasuda, T. A Phenazaborin-Based High-Efficiency Blue Delayed Fluorescence Material. Bull. Chem. Soc. Jpn. 2016, 89, 375-377.
35. Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. 2015, 54, 13581-13585.
36. Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient Homo–Lumo Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777-2781.
37. Li, D.; Zhang, H.; Wang, Y. Four-Coordinate Organoboron Compounds for Organic Light-Emitting Diodes (Oleds). Chem. Soc. Rev. 2013, 42, 8416-8433.
38. Shiu, Y.-J.; Cheng, Y.-C.; Tsai, W.-L.; Wu, C.-C.; Chao, C.-T.; Lu, C.-W.; Chi, Y.; Chen, Y.-T.; Liu, S.-H.; Chou, P.-T. Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. 2016, 55, 3017-3021.
39. Mellerup, S. K.; Yuan, K.; Nguyen, C.; Lu, Z.-H.; Wang, S. Donor-Appended N,C-Chelate Organoboron Compounds: Influence of Donor Strength on Photochromic Behaviour. Chem. Eur. J. 2016, 22, 12464-12472.
40. Hsu, Y.-J.; Chen, Y.-T.; Lee, W.-K.; Wu, C.-C.; Lin, T.-C.; Liu, S.-H.; Chou, P.-T.; Lu, C.-W.; Cheng, I. C.; Lien, Y.-J.; Chi, Y. Efficient Thermally Activated Delayed Fluorescence of Functional Phenylpyridinato Boron Complexes and High Performance Organic Light-Emitting Diodes. J. Mater. Chem. C 2017, 5, 1452-1462.
41. Cui, Y.; Li, F.; Lu, Z.-H.; Wang, S. Three-Coordinate Organoboron with a B=N Bond: Substituent Effects, Luminescence/Electroluminescence and Reactions with Fluoride. Dalton Trans. 2007, 2634-2643.
42. Taniguchi, T.; Wang, J.; Irle, S.; Yamaguchi, S. Tict Fluorescence of N-Borylated 2,5-Diarylpyrroles: A Gear Like Dual Motion in the Excited State. Dalton Trans. 2013, 42, 620-624.
43. Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling Singlet–Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2017, 56, 1571-1575.
44. Andrew, T. L.; Swager, T. M. Detection of Explosives Via Photolytic Cleavage of Nitroesters and Nitramines. J. Org. Chem. 2011, 76, 2976-2993.
45. Liu, X.-Y.; Liang, F.; Yuan, Y.; Cui, L.-S.; Jiang, Z.-Q.; Liao, L.-S. An Effective Host Material with Thermally Activated Delayed Fluorescence Formed by Confined Conjugation for Red Phosphorescent Organic Light-Emitting Diodes. Chem. Commun. 2016, 52, 8149-8151.
46. Liu, Q.-D.; Mudadu, M. S.; Thummel, R.; Tao, Y.; Wang, S. From Blue to Red: Syntheses, Structures, Electronic and Electroluminescent Properties of Tunable Luminescent N,N Chelate Boron Complexes. Adv. Funct. Mater. 2005, 15, 143-154.
47. Cui, Y.; Liu, Q.-D.; Bai, D.-R.; Jia, W.-L.; Tao, Y.; Wang, S. Organoboron Compounds with an 8-Hydroxyquinolato Chelate and Its Derivatives: Substituent Effects on Structures and Luminescence. Inorg. Chem. 2005, 44, 601-609.
48. Chen, H.-Y.; Chi, Y.; Liu, C.-S.; Yu, J.-K.; Cheng, Y.-M.; Chen, K.-S.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Carty, A. J.; Yeh, S.-J.; Chen, C.-T. Rational Color Tuning and Luminescent Properties of Functionalized Boron-Containing 2-Pyridyl Pyrrolide Complexes. Adv. Funct. Mater. 2005, 15, 567-574.
49. Qin, Y.; Kiburu, I.; Shah, S.; Jäkle, F. Luminescence Tuning of Organoboron Quinolates through Substituent Variation at the 5-Position of the Quinolato Moiety. Org. Lett. 2006, 8, 5227-5230.
50. Boese, R.; Nederpruem, N.; Blaeser, D. Comparative Study of Single Crystal X-Ray Structure Determinations of Tetramethylaminoborane and Tetramethylethene at 110 K. Struct. Chem. 1992, 3, 399-406.
51. Sachdev, H.; Zahn, N.; Huch, V. Structural and Spectroscopic Properties of Aryl Substituted Aminoboranes as Model Compounds and Synthons for B/C/N Materials and New Fluorescent Systems. Z. Anorg. Allg. Chem. 2009, 635, 2112-2119.
52. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative. J. Phys. Chem. C 2014, 118, 15985-15994.
53. Okazaki, M.; Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monkman, A. P.; Minakata, S. Thermally Activated Delayed Fluorescent Phenothiazine-Dibenzo[a,J]Phenazine-Phenothiazine Triads Exhibiting Tricolor-Changing Mechanochromic Luminescence. Chem. Sci. 2017, 8, 2677-2686.
54. Etherington, M. K.; Franchello, F.; Gibson, J.; Northey, T.; Santos, J.; Ward, J. S.; Higginbotham, H. F.; Data, P.; Kurowska, A.; Dos Santos, P. L.; Graves, D. R.; Batsanov, A. S.; Dias, F. B.; Bryce, M. R.; Penfold, T. J.; Monkman, A. P. Regio- and Conformational Isomerization Critical to Design of Efficient Thermally-Activated Delayed Fluorescence Emitters. Nat. Commun. 2017, 8, 14987.
55. Bell, B. M.; Clark, T. P.; De Vries, T. S.; Lai, Y.; Laitar, D. S.; Gallagher, T. J.; Jeon, J.-H.; Kearns, K. L.; McIntire, T.; Mukhopadhyay, S.; Na, H.-Y.; Paine, T. D.; Rachford, A. A. Boron-Based Tadf Emitters with Improved Oled Device Efficiency Roll-Off and Long Lifetime. Dyes and Pigm. 2017, 141, 83-92.
56. Chang, C.-H.; Kuo, M.-C.; Lin, W.-C.; Chen, Y.-T.; Wong, K.-T.; Chou, S.-H.; Mondal, E.; Kwong, R. C.; Xia, S.; Nakagawa, T.; Adachi, C. A Dicarbazole-Triazine Hybrid Bipolar Host Material for Highly Efficient Green Phosphorescent Oleds. J. Mater. Chem. 2012, 22, 3832-3838.
57. Adachi, C.; Kwong, R.; Forrest, S. R. Efficient Electrophosphorescence Using a Doped Ambipolar Conductive Molecular Organic Thin Film. Org. Electron. 2001, 2, 37-43.
58. Su, S.-J.; Sasabe, H.; Takeda, T.; Kido, J. Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent Oleds. Chem. Mater. 2008, 20, 1691-1693.
59. Cai, C.; Su, S.-J.; Chiba, T.; Sasabe, H.; Pu, Y.-J.; Nakayama, K.; Kido, J. High-Efficiency Red, Green and Blue Phosphorescent Homojunction Organic Light-Emitting Diodes Based on Bipolar Host Materials. Org. Electron. 2011, 12, 843-850.
60. Son, K. S.; Yahiro, M.; Imai, T.; Yoshizaki, H.; Adachi, C. Analyzing Bipolar Carrier Transport Characteristics of Diarylamino-Substituted Heterocyclic Compounds in Organic Light-Emitting Diodes by Probing Electroluminescence Spectra. Chem. Mater. 2008, 20, 4439-4446.
61. Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer. Appl. Phys. Lett. 2003, 82, 2422.
62. Tsuboi, T.; Liu, S.-W.; Wu, M.-F.; Chen, C.-T. Spectroscopic and Electrical Characteristics of Highly Efficient Tetraphenylsilane-Carbazole Organic Compound as Host Material for Blue Organic Light Emitting Diodes. Org. Electron. 2009, 10, 1372-1377.
63. Chang, C.-H.; Ho, C.-L.; Chang, Y.-S.; Lien, I.-C.; Lin, C.-H.; Yang, Y.-W.; Liao, J.-L.; Chi, Y. Blue-Emitting Ir(Iii) Phosphors with 2-Pyridyl Triazolate Chromophores and Fabrication of Sky Blue- and White-Emitting Oleds. J. Mater. Chem. C 2013, 1, 2639-2647.
64. Su, S.-J.; Chiba, T.; Takeda, T.; Kido, J. Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent Oleds. Adv. Mater. 2008, 20, 2125-2130.
65. Chu, C.-W.; Li, S.-H.; Chen, C.-W.; Shrotriya, V.; Yang, Y. High-Performance Organic Thin-Film Transistors with Metal Oxide/Metal Bilayer Electrode. Appl. Phys. Lett. 2005, 87, 193508.
66. Chen, C.-W.; Lu, Y.-J.; Wu, C.-C.; Wu, E. H.-E.; Chu, C.-W.; Yang, Y. Effective Connecting Architecture for Tandem Organic Light-Emitting Devices. Appl. Phys. Lett. 2005, 87, 241121.
67. Park, Y.-S.; Lee, S.; Kim, K.-H.; Kim, S.-Y.; Lee, J.-H.; Kim, J.-J. Exciplex-Forming Co-Host for Organic Light-Emitting Diodes with Ultimate Efficiency. Adv. Funct. Mater. 2013, 23, 4914-4920.
68. Huang, Y.-H.; Tsai, W.-L.; Lee, W.-K.; Jiao, M.; Lu, C.-Y.; Lin, C.-Y.; Chen, C.-Y.; Wu, C.-C. Unlocking the Full Potential of Conducting Polymers for High-Efficiency Organic Light-Emitting Devices. Adv. Mater. 2015, 27, 929-934.
69. Chang, C.-H.; Wu, Z.-J.; Chiu, C.-H.; Liang, Y.-H.; Tsai, Y.-S.; Liao, J.-L.; Chi, Y.; Hsieh, H.-Y.; Kuo, T.-Y.; Lee, G.-H.; Pan, H.-A.; Chou, P.-T.; Lin, J.-S.; Tseng, M.-R. A New Class of Sky-Blue-Emitting Ir(Iii) Phosphors Assembled Using Fluorine-Free Pyridyl Pyrimidine Cyclometalates: Application toward High-Performance Sky-Blue- and White-Emitting Oleds. ACS Appl. Mater. Interfaces 2013, 5, 7341-7351.
CHAPTER 2
1. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012).
2. Tao, Y., et al. Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Adv. Mater. 26, 7931-7958 (2014).
3. Yang, Z., et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915-1016 (2017).
4. Im, Y., Kim, M., Cho, Y. J., Seo, J.-A., Yook, K. S. & Lee, J. Y. Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 29, 1946-1963 (2017).
5. Cai, X., et al. 'Rate-limited effect' of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chem. Sci. 7, 4264-4275 (2016).
6. Endo, A., et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).
7. Zhang, Q., et al. Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. J. Am. Chem. Soc. 136, 18070-18081 (2014).
8. Penfold, T. J. On Predicting the Excited-State Properties of Thermally Activated Delayed Fluorescence Emitters. J. Phys. Chem. C 119, 13535-13544 (2015).
9. Wong, M. Y. & Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 29, 1605444 (2017).
10. Lee, D. R., et al. Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 7, 9625-9629 (2015).
11. Lin, T.-A., et al. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 28, 6976-6983 (2016).
12. Tsang, D. P.-K., Matsushima, T. & Adachi, C. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci. Rep. 6, 22463 (2016).
13. Zhang, D., Cai, M., Zhang, Y., Zhang, D. & Duan, L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 3, 145-151 (2016).
14. Nakanotani, H., Masui, K., Nishide, J., Shibata, T. & Adachi, C. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci. Rep. 3, 2127 (2013).
15. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 6, 253-258 (2012).
16. Lee, J.-H., Shin, H., Kim, J.-M., Kim, K.-H. & Kim, J.-J. Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency. ACS Appl. Mater. Interfaces 9, 3277-3281 (2017).
17. Liu, X.-K., et al. Nearly 100% Triplet Harvesting in Conventional Fluorescent Dopant-Based Organic Light-Emitting Devices Through Energy Transfer from Exciplex. Adv. Mater. 27, 2025-2030 (2015).
18. Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384 (2017).
19. Liu, X.-K., et al. Prediction and Design of Efficient Exciplex Emitters for High-Efficiency, Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes. Adv. Mater. 27, 2378-2383 (2015).
20. Sang Kyu, J., Kyoung Soo, Y. & Jun Yeob, L. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials. Nanotechnology 27, 224001 (2016).
21. Liu, W., et al. Novel Strategy to Develop Exciplex Emitters for High-Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials. Adv. Funct. Mater. 26, 2002-2008 (2016).
22. Hung, W.-Y., et al. The First Tandem, All-exciplex-based WOLED. Sci. Rep. 4, 5161 (2014).
23. Zamadar, M., Asaoka, S., Grills, D. C. & Miller, J. R. Giant infrared absorption bands of electrons and holes in conjugated molecules. Nat. Commun. 4, 2818 (2013).
24. Khatib, O., Mueller, A. S., Stinson, H. T., Yuen, J. D., Heeger, A. J. & Basov, D. N. Electron and hole polaron accumulation in low-bandgap ambipolar donor-acceptor polymer transistors imaged by infrared microscopy. Phys. Rev. B 90, 235307 (2014).
25. Yang, X., Wang, Y., Li, H. & Sheng, C. Optical Properties of Heterojunction between Hybrid Halide Perovskite and Charge Transport Materials: Exciplex Emission and Large Polaron. J. Phys. Chem. C 120, 23299-23303 (2016).
26. Richert, S., Rosspeintner, A., Landgraf, S., Grampp, G., Vauthey, E. & Kattnig, D. R. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes. J. Am. Chem. Soc. 135, 15144-15152 (2013).
27. Hung, W.-Y., et al. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor. ACS Appl. Mater. Interfaces 8, 4811-4818 (2016).
28. dos Santos, P. L., Dias, F. B. & Monkman, A. P. Investigation of the Mechanisms Giving Rise to TADF in Exciplex States. J. Phys. Chem. C 120, 18259-18267 (2016).
Experimental section references
1. Jiang, W. et al. J. Mater. Chem. 21, 4918 ̶ 4926 (2011).
2. Lin, M. S. et al. J. Mater. Chem. 22, 16114 ̶ 16120 (2012).
3. Hung, W.-Y. et al. ACS Appl. Mater. Interfaces 8, 4811 ̶ 4818 (2016).
4. Hung, W.-Y. et al. Appl. Phys. Lett. 88, 064102-1 ̶ 064102-3 (2006).
5. Frisch, M. J. et al. Gaussian 09 Revision D.01 (Gaussian Inc., 2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68038-
dc.description.abstract第一章
近年來含有硼烷基受體的熱激活延遲螢光(TADF)分子正引起學者們的注意,不過到現在還沒有人合成過在N供體和硼烷受體之間具有直接B-N連接的TADF放光分子。所以於合成上應簡化分子結構,從而促進合成設計和多功能性。此篇論文中我們合成了含有N-borylated和acridine(吖啶)受體的全新系列化合物:ACBM,PACBM和SACBM。進行光譜學分析可以發現到這些化合物具有顯著的溶劑化效應和TADF光物理性質。藉由時間依據的DFT計算化合物的HOMO和LUMO可以發現在空間中有明顯的分子內電荷轉移。而其中的SACBM樣品,可以製作出綠色發光的OLED元件,其CIE色度和最大外量子放光效率為(0.22,0.59),而元件的發光效率、功率及效率分別為19.1%,60.9cd / A和43.6lm / W,是一個具有極高效率並含有N-borylated 的OLED發光材料。
第二章
此篇論文我們研究將咔唑 (carbazole) 作為主要結構的電子提供者CN-Cz2及1,3,5-三嗪 (triazine) 作為基礎的電子接受者 (PO-T2T) 共同蒸鍍形成分子間電荷傳遞 (intermolecular charge transfer) ,熱激活延遲螢光 (TADF) 且放光效率極高的有機發光二極體材料之固體薄膜,其外部量子效率 (EQE) 可達16%。利用pump-probe步進式掃描 (step-scan) 傅立葉轉換紅外光譜儀來偵測其所形成的激態複合體 (exciplex) ,並從激發態的紅外光譜來明顯區分CN-Cz2及PO-T2T的區域性激發態 (LE) 或者是電荷轉移態 (CT) ,其中最為重要的是我們在CN-Cz2:PO-T2T的瞬時紅外吸收圖譜發現到一個寬大且中心大概位於2060 cm-1的吸收譜帶,其名為polaron吸收譜帶。透過仔細的時間解析可以了解到激態複合體的電荷轉移態會透過延遲放射螢光的過程經過大約3 µs緩解至中間基態緊接著再由結構緩解回到最原始的區域性基態,結構緩解的時間尺度大約14 µs。
偵測固態樣品的光學性質一直是一個困難的挑戰,藉由pump-probe步進式掃描 (step-scan) 傅立葉轉換紅外光譜儀可以提升相當多的光學靈敏度及提供激發態相當詳細的分子震動變化訊息,此篇論文主要是偵測激態複合體分子間的電荷轉移及相互作用,還有相當多的高效率分子內有機發光二極體材料可以研究,此外還能架設循環式液體系統,透過幫浦以一定的流速來更新樣品同樣也可以偵測液體樣品,使的此技術可以發展得更加多元。
zh_TW
dc.description.abstractChapter 1
Despite the fast boom of thermally activated delayed fluorescence (TADF) emitters bearing borane-based acceptor, so far, no TADF emitter with a direct B−N linkage between N-donor and boryl acceptor has been reported. The latter should simplify the molecular architecture and hence facilitate the synthetic design and versatility. We report here the preparation and characterization of a new series of N-borylated compounds with functional acridine donor unit; namely: ACBM, PACBM, and SACBM. Spectroscopic studies were performed to explore their photophysical properties that exhibited prominent solvatochromism and thermally activated delayed fluorescence. The time-dependent DFT calculation indicated the involvement of substantial intramolecular charge transfer character for which HOMO and LUMO are spatially separated. For compound SACBM, fabrication of green emitting OLED gave CIE chromaticity of (0.22, 0.59) and maximum external quantum efficiency, luminance efficiency and power efficiency of 19.1%, 60.9 cd/A, and 43.6 lm/W, respectively, demonstrating for the first time the highly efficient OLEDs using N-borylated TADF emitters.
Chapter 2
We report here for the first time the pump-probe step-scan Fourier transform IR spectra of exciplex composed of a new carbazole-based electron donor (D: CN-Cz2) and 1,3,5-triazine-based electron acceptor (A: PO-T2T) co-deposited on the solid film that gives rise to highly efficient intermolecular charge transfer (CT), thermally activated delayed fluorescence (TADF), and record-high exciplex type OLEDs (EQE: 16%). The IR spectral assignment to the CT state is unambiguous due to its distinction from the local excited (LE) state of either the donor or the acceptor chromophore. More importantly, a continuous, broad absorption band centered at ~2,060 cm-1 was observed in the CN-Cz2:PO-T2T transient IR spectrum and assigned to a polaron absorption. Comprehensive time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original prepared CN-Cz2:PO-T2T LE configuration within ~14 µs.
The detection of the optical properties of solid samples has been a difficult challenge. Pump-probe step-scan FT-IR cna increase the amount of optical sensitivity and provide a very detailed molecular vibration message in excited state. Here, we tried to detect exciplex and the charge transfer and interaction between donor and acceptor. In addition to that, using this technic, there are a lots of high efficiency intra-molecular OLED materials can be studied. Except to solid sample, we can setup a circulating liquid system, through the peristaltic pump to provide the a certain flow rate to renew sample solution can also detect liquid samples, making this instrument can be developed more diverse.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:11:36Z (GMT). No. of bitstreams: 1
ntu-106-D01223105-1.pdf: 8439274 bytes, checksum: f9bb2ff1ff0692d9d914dbf848d4ef09 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 1
第一章 1
第二章 1
ABSTRACT 3
CHAPTER 1 3
CHAPTER 2 3
目錄 5
LIST OF FIGURES : 6
LIST OF TABLES : 12
CHAPTER 1 13
FIRST N‑BORYLATED EMITTERS DISPLAYING HIGHLY EFFICIENT THERMALLY ACTIVATED DELAYED FLUORESCENCE AND HIGH-PERFORMANCE OLEDS 13
1.1 INTRODUCTION 13
1.2 EXPERIMENTAL SECTIONS 16
1.3 RESULTS AND DISCUSSION 21
1.4 CONCLUSION 39
1.5 APPENDIX 41
1.6 REFERENCES 56
CHAPTER 2 67
PROBE EXCIPLEX STRUCTURE OF HIGHLY EFFICIENT TADF OLEDS 67
2.1 INTRODUCTION 67
2.2 RESULTS AND DISCUSSION 68
2.3 REFERENCE 82
2.4 EXPERIMENTAL SECTION 86
2.5 EXPERIMENTAL SECTION REFERENCES 120
dc.language.isoen
dc.subject激態複合體zh_TW
dc.subject步進式掃描zh_TW
dc.subject傅立葉轉換遠紅外光光譜儀zh_TW
dc.subject熱激活延遲螢光zh_TW
dc.subjectExciplexen
dc.subjectstep-scanen
dc.subjectFT-IRen
dc.subjectTADFen
dc.title高效率熱激活延遲螢光之有機發光二極體材料與激態複合體之結構研究zh_TW
dc.titleProbe Exciplex Structure of Highly Efficient TADF OLEDsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee張鎮平(Zhen-Ping Zhang),洪文誼(Wen-Yi Hung),汪根叢(Ken-Tsung Wong),何美霖(Mei-Lin Ho)
dc.subject.keyword激態複合體,步進式掃描,傅立葉轉換遠紅外光光譜儀,熱激活延遲螢光,zh_TW
dc.subject.keywordExciplex,step-scan,FT-IR,TADF,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201800022
dc.rights.note有償授權
dc.date.accepted2018-01-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved