Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6801
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡(Kuo, Po-Ling)
dc.contributor.authorChin-Hsiung Tsaien
dc.contributor.author蔡錦雄zh_TW
dc.date.accessioned2021-05-17T09:18:24Z-
dc.date.available2017-07-27
dc.date.available2021-05-17T09:18:24Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citationAlfieri, R. R., M. A. Bonelli, et al. (2006). 'Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress.' The Journal of physiology 576(2): 391-401.

Barkefors, I., S. Le Jan, et al. (2008). 'Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2.' Journal of Biological Chemistry 283(20): 13905-13912.

Chung, S., R. Sudo, et al. (2009). 'Cell migration into scaffolds under co-culture conditions in a microfluidic platform.' Lab Chip 9(2): 269-275.

Chung, S., R. Sudo, et al. (2010). 'Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions.' Annals of biomedical engineering 38(3): 1164-1177.

Engler, A. J., M. A. Griffin, et al. (2004). 'Myotubes differentiate optimally on substrates with tissue-like stiffness.' The Journal of cell biology 166(6): 877-887.

Engler, A. J., F. Rehfeldt, et al. (2007). 'Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation.' Methods in cell biology 83: 521-545.

Engler, A. J., S. Sen, et al. (2006). 'Matrix elasticity directs stem cell lineage specification.' Cell 126(4): 677-689.

Gardel, M. L., I. C. Schneider, et al. (2010). 'Mechanical integration of actin and adhesion dynamics in cell migration.' Annual review of cell and developmental biology 26: 315-333.

Grattoni, C. A., H. H. Al-Sharji, et al. (2001). 'Rheology and permeability of crosslinked polyacrylamide gel.' Journal of colloid and interface science 240(2): 601-607.

Gribova, V., T. Crouzier, et al. (2011). 'A material's point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties.' J. Mater. Chem. 21(38): 14354-14366.

Hanson, L., L. Cui, et al. (2011). 'A microfluidic positioning chamber for long‐term live‐cell imaging.' Microscopy Research and Technique 74(6): 496-501.

Hwang, S. M., R. H. Lee, et al. (2002). 'Expression of aquaporin-5 and its regulation in skeletal muscle cells.' Experimental & molecular medicine 34(1): 69.

Isenberg, B. C., P. A. DiMilla, et al. (2009). 'Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength.' Biophysical journal 97(5): 1313-1322.

Jaeger, M., M. Carin, et al. (1999). 'The osmotic migration of cells in a solute gradient.' Biophysical journal 77(3): 1257-1267.

Jo, B. H., L. M. Van Lerberghe, et al. (2000). 'Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer.' Microelectromechanical Systems, Journal of 9(1): 76-81.

Kandow, C. E., P. C. Georges, et al. (2007). 'Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses.' Methods in cell biology 83: 29-46.

Li Jeon, N., H. Baskaran, et al. (2002). 'Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device.' Nature biotechnology 20(8): 826-830.

Lo, C. M., H. B. Wang, et al. (2000). 'Cell movement is guided by the rigidity of the substrate.' Biophysical journal 79(1): 144-152.

Loitto, V. M., T. Karlsson, et al. (2009). 'Water flux in cell motility: expanding the mechanisms of membrane protrusion.' Cell motility and the cytoskeleton 66(5): 237-247.

Nemir, S., H. N. Hayenga, et al. (2010). 'PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity.' Biotechnology and bioengineering 105(3): 636-644.

Papadopoulos, M., S. Saadoun, et al. (2008). 'Aquaporins and cell migration.' Pflugers Archiv European Journal of Physiology 456(4): 693-700.

Park, J. Y., C. M. Hwang, et al. (2007). 'Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient.' Lab Chip 7(12): 1673-1680.

Park, J. Y., S. J. Yoo, et al. (2009). 'Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow.' Lab Chip 9(15): 2194-2202.

Saadoun, S., M. C. Papadopoulos, et al. (2005). 'Involvement of aquaporin-4 in astroglial cell migration and glial scar formation.' Journal of cell science 118(24): 5691-5698.

Sochol, R. D., A. T. Higa, et al. (2011). 'Unidirectional mechanical cellular stimuli via micropost array gradients.' Soft Matter.

Tse, J. R. and A. J. Engler (2010). 'Preparation of hydrogel substrates with tunable mechanical properties.' Curr Prot Cell Bio Chpt 10: 1-16.

Van Donkelaar, C., M. Daniels, et al. (2003). 'Cell deformation in response to long-term hyperosmotic loading.' Acta of Bioengineering and Biomechanics 5(1): 3-10.

Wong, J. Y., A. Velasco, et al. (2003). 'Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels.' Langmuir 19(5): 1908-1913.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6801-
dc.description.abstract細胞移動在許多生理現象及疾病扮演非常重要的角色,例如血管新生、傷口癒合以及癌症轉移。因此研究細胞移動的基本機制,將對疾病治療與再生醫學的發展至為關鍵。部分生物力學刺激對細胞移動的影響,已被廣泛研究並深入探討;然而,在多重訊號同時刺激下,細胞將如何受到調控,仍是目前了解甚少的領域。在本篇研究中,我們將具有硬度梯度的水膠整合進入微流道系統中,此一整合型裝置將能同時提供雙重力學刺激去調控細胞移動。藉由此一裝置,我們將能在一個更接近人體生理狀況的環境中,深入探討硬度梯度與滲透壓梯度對細胞移動的影響,此一裝置同時也具有應用在其它研究目的的潛力。zh_TW
dc.description.abstractCell migration plays an important role in both physiology and disease, such as angiogenesis, wound healing and cancer metastasis. Therefore, understanding the fundamental mechanisms of cell migration is crucial to create strategies for disease treatment and regenerative medicine. Some biomechanical cues have been well studied about their effects on guiding cell migration, however, few discuss about simultaneously generating dual or multiple cues to affect cell migration. Here, we integrated a gradient-compliant polyacrylamide (PA) gel into the microfluidic system, thus enabling the device to provide dual mechanical cues at the same time. By adopting this advanced device, we can investigate the effects of stiffness and osmotic gradients on guiding cell migration in a more in vivo-like environment, and this dual cues system might also be useful for other applications.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:24Z (GMT). No. of bitstreams: 1
ntu-101-R99945035-1.pdf: 1879761 bytes, checksum: 4d7fc8b32ddf3620a4f34e9cefede787 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
Content v
List of Figures vi
List of Tables vii
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 6
2.1 Device design and operation principle 6
2.2 Fabrication of microfluidic system 10
2.2.1 Photolithography 10
2.2.2 Soft lithography 12
2.3 Gradient-compliant polyacrylamide gel 13
2.3.1 Polymerization of the polyacrylamide gel 13
2.3.2 Functionalization of the polyacrylamide gel 14
2.3.3 Characterization of the polyacrylamide gel 15
2.4 Fabrication and characterization of the dual mechanical cues device 16
2.4.1 Fabrication of PDMS substrate 16
2.4.2 Integration of the PA gel and the microfluidic channels 17
2.4.3 Quantification of the concentration gradient 20
2.5 Osmotic gradients simulation 20
2.6 Cell culture and cell migration analysis 22
Chapter 3. Results and Discussion 24
3.1 The integrated PA gel-microfluidic device 24
3.2 Concentration gradients generation and analysis 27
3.2.1 Simulation of the sucrose concentration gradient 27
3.2.2 Trypan blue concentration gradient 30
3.3 Characterization of the gradient-compliant PA gel 31
3.3.1 Stiffness gradient 31
3.4 C2C12 cell culture and analysis 34
3.4.1 Cell culture in the integrated PA gel-microfluidic device 34
3.4.2 Cell culture in the high osmolarity cell culture medium 36
3.4.3 Cell migration on a gradient-compliant PA gel 39
3.5 Evaluation of 2D and 3D hydrogel-microfluidic integration systems 42
Chapter 4. Conclusion and Future works 44
Reference 46
dc.language.isoen
dc.title具雙重力學刺激之細胞移動研究微流道裝置zh_TW
dc.titleMicrofluidic Device with Dual Mechanical Cues for Cell Migration Investigationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor林致廷(Lin, Chih-Ting)
dc.contributor.oralexamcommittee李超煌(Lee, Chau-Hwang)
dc.subject.keyword細胞移動,微流道,水膠,硬度梯度,滲透壓梯度,zh_TW
dc.subject.keywordcell migration,microfluidics,hydrogel,stiffness gradient,osmotic gradient,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved