請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張培仁(Pei-Zen Chang) | |
dc.contributor.author | Jing-Han Lin | en |
dc.contributor.author | 林景翰 | zh_TW |
dc.date.accessioned | 2021-06-17T02:11:18Z | - |
dc.date.available | 2022-08-17 | |
dc.date.copyright | 2020-09-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | [1] Y. Zhou and W. Xue, 'Review of tool condition monitoring methods in milling processes,' The International Journal of Advanced Manufacturing Technology, vol. 96, no. 5-8, pp. 2509-2523, 2018. [2] M. Elbestawi, T. Papazafiriou, and R. Du, 'In-process monitoring of tool wear in milling using cutting force signature,' International Journal of Machine Tools and Manufacture, vol. 31, no. 1, pp. 55-73, 1991. [3] M. Nouri, B. K. Fussell, B. L. Ziniti, and E. Linder, 'Real-time tool wear monitoring in milling using a cutting condition independent method,' International Journal of Machine Tools and Manufacture, vol. 89, pp. 1-13, 2015. [4] K. Javed, R. Gouriveau, X. Li, and N. Zerhouni, 'Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model,' Journal of Intelligent Manufacturing, vol. 29, no. 8, pp. 1873-1890, 2018. [5] B. Kaya, C. Oysu, and H. M. Ertunc, 'Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks,' Advances in Engineering Software, vol. 42, no. 3, pp. 76-84, 2011. [6] M. Wang and J. Wang, 'CHMM for tool condition monitoring and remaining useful life prediction,' The International Journal of Advanced Manufacturing Technology, vol. 59, no. 5-8, pp. 463-471, 2012. [7] W.-H. Hsieh, M.-C. Lu, and S.-J. Chiou, 'Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling,' The International Journal of Advanced Manufacturing Technology, vol. 61, no. 1-4, pp. 53-61, 2012. [8] B. Chen, X. Chen, B. Li, Z. He, H. Cao, and G. Cai, 'Reliability estimation for cutting tools based on logistic regression model using vibration signals,' Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2526-2537, 2011. [9] Z. Yuqing, L. Xinfang, L. Fengping, S. Bingtao, and X. Wei, 'An online damage identification approach for numerical control machine tools based on data fusion using vibration signals,' Journal of Vibration and Control, vol. 21, no. 15, pp. 2925-2936, 2015. [10] P. Sevilla-Camacho, G. Herrera-Ruiz, J. Robles-Ocampo, and J. Jáuregui-Correa, 'Tool breakage detection in CNC high-speed milling based in feed-motor current signals,' The International Journal of Advanced Manufacturing Technology, vol. 53, no. 9-12, pp. 1141-1148, 2011. [11] R. Koike, K. Ohnishi, and T. Aoyama, 'A sensorless approach for tool fracture detection in milling by integrating multi-axial servo information,' CIRP Annals, vol. 65, no. 1, pp. 385-388, 2016. [12] A. Ammouri and R. Hamade, 'Current rise criterion: a process-independent method for tool-condition monitoring and prognostics,' The International Journal of Advanced Manufacturing Technology, vol. 72, no. 1-4, pp. 509-519, 2014. [13] 黃門, '以電流及振動訊號監測微銑削刀具磨耗之研究,' 臺灣大學機械工程學研究所學位論文, pp. 1-72, 2016. [14] 蔡乙陞, '銑削加工振動訊號應用於刀具磨耗監控之研究,' 2019. [15] 林伯恂, '切削條件改變下之刀具狀態監測,' 臺灣大學機械工程學研究所學位論文, pp. 1-57, 2014. [16] 呂定憲, '應用卷積神經網路於 CNC 攻牙之刀具狀態監測,' 臺灣大學機械工程學研究所學位論文, no. 2019 年, pp. 1-62, 2019. [17] 許志豪, '應用類神經網路與多重感測器之微銑削刀具狀態偵測系統開發,' 中興大學機械工程學系所學位論文, pp. 1-84, 2015. [18] 林俊佑, '應用刀具疊圖技術之磨耗檢測,' 中正大學機械工程學研究所學位論文, 2018. [19] K. Huh, J.-J. Jung, and K.-K. Lee, 'A cutting force monitoring system based on AC spindle drive,' in Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No. 98CH36207), 1998, vol. 5: IEEE, pp. 3013-3017. [20] X. Li, 'Development of current sensor for cutting force measurement in turning,' IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 289-296, 2005. [21] X. Li, P. K. Venuvinod, and M. Chen, 'Feed cutting force estimation from the current measurement with hybrid learning,' The International Journal of Advanced Manufacturing Technology, vol. 16, no. 12, pp. 859-862, 2000. [22] X. Li, 'Real-time prediction of workpiece errors for a CNC turning centre, part 3. Cutting force estimation using current sensors,' The International Journal of Advanced Manufacturing Technology, vol. 17, no. 9, pp. 659-664, 2001. [23] X. Li, A. Djordjevich, and P. K. Venuvinod, 'Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring,' IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 697-702, 2000. [24] X. Li, 'Real-time prediction of workpiece errors for a CNC turning centre, Part 4. Cutting-force-induced errors,' The International Journal of Advanced Manufacturing Technology, vol. 17, no. 9, pp. 665-669, 2001. [25] X. Li and R. Du, 'Analysis and compensation of workpiece errors in turning,' International journal of production research, vol. 40, no. 7, pp. 1647-1667, 2002. [26] Y.-H. Jeong and D.-W. Cho, 'Estimating cutting force from rotating and stationary feed motor currents on a milling machine,' International Journal of Machine Tools and Manufacture, vol. 42, no. 14, pp. 1559-1566, 2002. [27] D. Aslan and Y. Altintas, 'Prediction of cutting forces in five-axis milling using feed drive current measurements,' IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 833-844, 2018. [28] M. W. Shen, K. G. Fan, and J. G. Yang, 'Motor Current-Based Cutting Force Induced Error Detection and Modeling for CNC Milling Machine,' in Advanced Materials Research, 2014, vol. 889: Trans Tech Publ, pp. 297-302. [29] 邱雅琳, '等切削力控制系統動態特性建立之研究,' 臺灣大學機械工程學研究所學位論文, pp. 1-71, 2017. [30] J. W. Cooley and J. W. Tukey, 'An algorithm for the machine calculation of complex Fourier series,' Mathematics of computation, vol. 19, no. 90, pp. 297-301, 1965. [31] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, 'A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests,' Journal of Manufacturing Science and Engineering, vol. 139, no. 7, 2017. [32] L. Breiman, 'Random forests,' Machine learning, vol. 45, no. 1, pp. 5-32, 2001. [33] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees. CRC press, 1984. [34] JamJam, 'Regression Tree | 迴歸樹, Bagging, Bootstrap Aggregation | R語言,' ed. [35] I. 8688-2, 'Tool life testing in milling — Part 2: End milling,' 1989. [36] B. T. Roesler, M. Francsiquez, and B. P. Epps, 'Design and analysis of trochoidal propulsors using nonlinear programming optimization techniques,' in International Conference on Offshore Mechanics and Arctic Engineering, 2014, vol. 45516: American Society of Mechanical Engineers, p. V08BT06A032. [37] M. P. Groover, Fundamentals of modern manufacturing: materials processes, and systems. John Wiley Sons, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68017 | - |
dc.description.abstract | 隨著第四次工業革命的到來,客製化、精密化、快速化儼然已成為工具機的必要功能,因此在加工過程中的刀具細微變化便顯得格外重要,它將會影響到工件的尺寸精度與成本,本研究旨在以無須加裝額外的感測器下,透過馬達電流值,建立刀具磨耗監測模型,以達到即時刀具狀態監控(Tool Condition Monitoring,TCM)的目的。實驗環境是以CNC三軸銑床進行實驗,使用刀具為3刃的捨棄式刀具,以轉速 2,520 (rpm)、進給率 756 (mm/min)、切削深度 0.5 (mm) 對中碳鋼進行槽銑。訊號收集是透過架設於工具機工作台上的動力計量測切削力訊號,安裝於電控箱中的馬達驅動器來量測馬達電流訊號,以及架設於工作台上的顯微鏡來量測刀具磨耗值。訊號分析方面,將所收集到的馬達電流訊號與切削力訊號經過低通濾波器濾波之後,擷取穩定切削時段的訊號來進行分析,將該時段的時域訊號以快速傅立葉轉換得到頻域訊號,並選取頻域訊號中的振幅大小當成機器學習的訓練特徵。磨耗分析方面,在切削固定距離後分別用顯微鏡依序量測每刃的平均刀腹磨耗值,然後再取平均值得到刀具的3刃平均磨耗值,並透過曲線擬合的方式找出刀具磨耗的趨勢方程式,藉此擴增訓練的資料點數。建立模型方面,選用的機器學習演算法為隨機森林,分別建立基於馬達電流與切削力和刀具磨耗間的關係、基於切削力和刀具磨耗間的關係、以及基於馬達電流和刀具磨耗間的關係,訓練過程中透過隨機森林的袋外特徵重要性刪除不重要的特徵,以降低模型的均方根誤差,提高決定係數。最後,基於馬達電流與切削力模型結果之均方根誤差為3.1108,決定係數為0.9831;基於切削力模型結果之均方根誤差為3.0874,決定係數為0.9836;基於馬達電流模型結果之均方根誤差為5.8449,決定係數為0.9427。研究結果證實以馬達電流值來監測刀具磨耗為可行且有效的方法。 | zh_TW |
dc.description.abstract | With the advent of the fourth industrial revolution, customization, accuracy and speed have become the basic functions of machine tools, so subtle changes in cutting tools during processing become more and more important. This thesis aims to establish a tool wear monitoring model through the motor current value without additional sensors, so as to achieve the purpose of real-time Tool Condition Monitoring (TCM). A CNC three-axis milling machine is used for the experiment. A three-flutes throw-away cutting tool is used to slot the medium carbon steel at the rotating speed of 2,520 (rpm) the feed rate of 756 (mm/min), and the cutting depth of 0.5 (mm). For signal collection, the cutting force signal is measured by the dynamometer mounted on the working table of the machine tool, the motor current signal is measured by the motor driver installed in the electric control panel, and the tool wear is measured by the microscope mounted on the working table of the machine tool. For signal analysis, the collected motor current signal and cutting force signal are filtered by a low-pass filter, and the signal in stable cutting segment is selected for analysis. The Fast Fourier Transform (FFT) is used to convert the signal from time-domain into frequency-domain, and the features for model training are chosen by the amplitude. For tool wear analysis, measuring the average flank wear value of each flute sequentially with a microscope after cutting a specified distance, then take the average to obtain the average wear value of the 3 flutes of the tool. To increase the number of training data, the tool wear tendency equation is obtained by curve fitting on the raw data of tool wear. The Random Forest (RF) algorithm is used to build the model correlating the relationship between the motor current and the cutting force and tool wear, the relationship between the cutting force and tool wear, and the relationship between the motor current and tool wear, respectively. Removing the unimportant features through the function called out-of-bag feature importance to reduce the Root Mean Square Error (RMSE) of the model and improve the coefficient of determination (R^2) of the model. Finally, the RMSE based on the results of the motor current and cutting force model is 3.1108 and the R^2 is 0.9831, the RMSE based on the results of the cutting force model is 3.0874 and the R^2 is 0.9836, the RMSE based on the results of the motor current model is 5.8449 and the R^2 is 0.9427. The results show that monitoring the wear of cutting tool from the motor current is a feasible and effective method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:11:18Z (GMT). No. of bitstreams: 1 U0001-1708202017222100.pdf: 8098626 bytes, checksum: a4b33dd4b563e1bb53da110671947e03 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 2 第二章 文獻回顧 3 第三章 研究方法 5 3.1 研究架構 5 3.2 馬達電流與切削力的關係 5 3.3 訊號頻域轉換 6 3.3.1 傅立葉轉換(Fourier transform) 7 3.3.2 小波轉換(Wavelet transform) 9 3.4 機器學習模型 13 3.4.1 隨機森林 14 3.5 顫振穩定界線圖(Stability lobe diagram) 18 第四章 實驗設備與規劃 19 4.1 實驗架設 19 4.2 實驗設備 23 4.2.1 工具機 23 4.2.2 刀具 25 4.2.3 工件 26 4.2.4 動力計 27 4.2.5 控制元件 27 4.2.6 光學顯微鏡 28 4.2.7 訊號擷取卡 28 4.2.8 加速規 29 4.2.9 衝擊槌 30 4.3 實驗流程 31 4.3.1 動態剛性量測流程 32 4.3.2 銑削加工流程 34 4.3.3 切削力擷取流程 35 4.3.4 馬達電流擷取流程 36 4.3.5 刀具磨耗量測流程 40 第五章 實驗結果 44 5.1 馬達電流與切削力的關係 44 5.2 顫振穩定界線圖 45 5.2.1 振動訊號分析 45 5.2.2 顫振穩定界線圖結果 48 5.3 訊號分析 49 5.3.1 切削力訊號分析 49 5.3.2 馬達電流訊號分析 53 5.4 刀具磨耗分析 58 5.5 資料擴增與特徵選取 60 5.5.1 增加資料集 60 5.5.2 切削力與馬達電流特徵選取 61 5.6 基於切削力與馬達電流之刀具磨耗模型結果 63 5.7 基於切削力之刀具磨耗模型結果 66 5.8 基於馬達電流之刀具磨耗模型結果 68 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71 參考文獻 72 | |
dc.language.iso | zh-TW | |
dc.title | 以機器學習建立刀具磨耗量之即時監測模型 | zh_TW |
dc.title | Establishing A Real-time Monitoring Model of Tool Wear by Machine Learning | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 胡毓忠(Yuh-Chung Hu) | |
dc.contributor.oralexamcommittee | 黃榮堂(Jung-Tang Huang),李尉彰(Wei-Chang Li),蔡燿全(Yao-Chuan Tsai) | |
dc.subject.keyword | 刀具磨耗監測模型,馬達電流,切削力,隨機森林, | zh_TW |
dc.subject.keyword | Tool wear monitoring model,Motor current,Cutting force,Random forest, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202003820 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202017222100.pdf 目前未授權公開取用 | 7.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。