請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68015完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁啟惠(Chi-Huey Wong) | |
| dc.contributor.author | Chiu-Ping Liu | en |
| dc.contributor.author | 劉秋萍 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:11:16Z | - |
| dc.date.available | 2023-03-01 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-17 | |
| dc.identifier.citation | 1. Woof JM, Burton DR (2004) Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4(2):89-99.
2. Janeway C (2001) Immunobiology 5 : the immune system in health and disease (Garland Pub., New York) 5th Ed pp xviii, 732 p. 3. Ferlay J, et al. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12):2893-2917. 4. Nunes RA, Harris LN (2002) The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin. Breast Cancer 3(2):125-137. 5. Baselga J, Albanell J (2001) Mechanism of action of anti-HER2 monoclonal antibodies. Ann. Oncol. 12(S1):S35-41. 6. Mir O, Berveiller P, Pons G (2007) Trastuzumab-mechanism of action and use. N. Engl. J. Med. 357(16):1664-1666. 7. Valabrega G, Montemurro F, Aglietta M (2007) Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol. 18(6):977-984. 8. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol. 10(12):1179-1187. 9. Huhn C, et al. (2009) IgG glycosylation analysis. Proteomics 9(4):882-913. 10. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr. Res. 344(12):1387-1390. 11. Siberil S, Dutertre CA, Fridman WH, Teillaud JL (2007) FcgammaR: The key to optimize therapeutic antibodies? Crit. Rev. Oncol. Hematol. 62(1):26-33. 12. Abes R, Dutertre CA, Agnelli L, Teillaud JL (2009) Activating and inhibitory Fcgamma receptors in immunotherapy: being the actor or being the target. Expert Rev. Clin. Immunol. 5(6):735-747. 13. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nature Reviews Drug Discovery 8(3):226-234. 14. Shields RL, et al. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277(30):26733-26740. 15. Okazaki A, et al. (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J. Mol. Biol. 336(5):1239-1249. 16. Kurogochi M, et al. (2015) Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for Fc gamma RIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. PLoS One 10(7):e0132848. 17. Huang W, et al. (2012) Chemoenzymatic Glycoengineering of Intact IgG Antibodies for Gain of Functions. J. Am. Chem. Soc. 134(29):12308-12318. 18. Lin CW, et al. (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl. Acad. Sci. U. S. A. 112(34):10611-10616. 19. Tsai TI, et al. (2017) An Effective Bacterial Fucosidase for Glycoprotein Remodeling. ACS Chem. Biol. 12(1):63-72. 20. Farid SS (2006) Established bioprocesses for producing antibodies as a basis for future planning. Adv. Biochem. Eng. Biotechnol. 101:1-42. 21. Potgieter TI, et al. (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J. Biotechnol. 139(4):318-325. 22. Li H, et al. (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24(2):210-215. 23. Cox KM, et al. (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 24(12):1591-1597. 24. Grohs BM, et al. (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. J. Agric. Food Chem. 58(18):10056-10063. 25. Komarova TV, et al. (2011) Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 6(3):e17541. 26. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochimica Et Biophysica Acta-General Subjects 1426(2):227-237. 27. Beck A, Cochet O, Wurch T (2010) GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 5(1):95-111. 28. Cantarel BL, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37(Database issue):D233-238. 29. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309-316. 30. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293:781-788. 31. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316:695-696. 32. Fairbanks AJ (2017) The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 46(16):5128-5146. 33. Collin M, Fischetti VA (2004) A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J. Biol. Chem. 279(21):22558-22570. 34. Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 20(12):3046-3055. 35. Huang W, et al. (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J. Am. Chem. Soc. 134(29):12308-12318. 36. Goodfellow JJ, et al. (2012) An endoglycosidase with alternative glycan specificity allows broadened glycoprotein remodelling. J. Am. Chem. Soc. 134(19):8030-8033. 37. Sjogren J, et al. (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and alpha1-acid glycoprotein. Biochem. J. 455(1):107-118. 38. Sjogren J, et al. (2015) EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25(10):1053-1063. 39. Li TZ, et al. (2016) Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling. J. Biol. Chem. 291(32):16508-16518. 40. Parsons TB, et al. (2016) Optimal Synthetic Glycosylation of a Therapeutic Antibody. Angew. Chem. Int. Ed. Engl. 55(7):2361-2367. 41. Wang N, et al. (2016) Non-enzymatic reaction of glycosyl oxazoline with peptides. Carbohydr. Res. 436:31-35. 42. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87(5):1617-1631. 43. Striebeck A, Robinson DA, Schuttelkopf AW, van Aalten DMF (2013) Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. Open Biol 3(9). 44. Wang TY, et al. (2013) Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol. 13:71. 45. Wang LX, Lomino JV (2012) Emerging technologies for making glycan-defined glycoproteins. ACS Chem. Biol. 7(1):110-122. 46. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23(9):1126-1136. 47. Holliger P, Winter G (1993) Engineering bispecific antibodies. Curr. Opin. Biotechnol. 4(4):446-449. 48. Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J. Biotechnol. 113(1-3):171-182. 49. Wang CC, et al. (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc. Natl. Acad. Sci. U. S. A. 106(43):18137-18142. 50. Zhang N, et al. (2011) Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. Mabs-Austin 3(3):289-298. 51. Ratner M (2014) Genentech's glyco-engineered antibody to succeed Rituxan. Nat. Biotechnol. 32(1):6-7. 52. Cartron G, et al. (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754-758. 53. Musolino A, et al. (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26(11):1789-1796. 54. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325-1334. 55. Beck A, et al. (2008) Trends in Glycosylation, Glycoanalysis and Glycoengineering of Therapeutic Antibodies and Fc-Fusion Proteins. Curr. Pharm. Biotechnol. 9(6):482-501. 56. Monnet C, et al. (2014) Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. Mabs-Austin 6(2):422-436. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68015 | - |
| dc.description.abstract | 近年來開發以單株抗體作為治療癌症,抗發炎及防禦病原體等之標靶藥物深受矚目; 然而,抗體Fc部位上的醣體組成對其與各種免疫細胞間的作用力具有相當大之影響。目前市面上以哺乳動物細胞作為宿主表達出來之抗體,除了其Fc部位上帶有非均相化的醣分子,且生產過程易受到病毒污染,純化費時,價格亦相對昂貴,因此,開發具大量生產均相化、且結構明確的抗體表達系統為亟待解決之課題。本研究利用醣化基因OCH1缺陷之甲醇誘導型畢赤酵母菌表現trastuzumab抗體,所產出之抗體Fc上的醣分子以五顆甘露糖鏈結 (Man5) 為主; 接著,我們從CAZymes資料庫中篩選並以大腸桿菌E. coli表達出十種新的內切糖苷酶 (Endoglycosidase),作為後續抗體醣化修飾之酵素,且這些新發現的酵素可替代現有之內切糖苷酶EndoA與EndoH,及轉醣酶EndoS。此外,EndoE與EndoP兩種酵素不僅可利用雙觸鏈結寡糖鏈 (bi-antennary oligosaccharide chains)結構的醣分子作為抗體上Fc醣修飾的醣體來源,亦有催化三觸及四觸鏈結寡糖鏈 (tri- and tetra-antennary oligosaccharide chains) 結構的醣分子之潛力。本研究提供醣修飾及優化醣蛋白的系統性方法,並能提升IgG抗體之功效。 | zh_TW |
| dc.description.abstract | Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Since the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody expression in mammalian hosts exhibits heterogeneous glycosylation patterns and is relatively expensive, new efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAb with desirable glycoforms. The methylotrophic yeast Pichia pastoris that produces glycoproteins with high-mannose N-glycans has recently been engineered to express therapeutic glycoproteins. In this study, we demonstrate that glycosylation remodeling of the monoclonal antibody trastuzumab expressed in glycoengineered P. pastoris, through de-glycosylation by endoglycosidases identified from the CAZymes database, and transglycosylation using glycans with stable leaving group will generate a homogeneous antibody designed to optimize the effector functions. The ten newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS); and two of which can even accept sialylated tri- and tetra-antennary glycans as substrates. This study provides a new platform for use to modulate and optimize the functions of glycoproteins, including the effector functions of IgG antibodies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:11:16Z (GMT). No. of bitstreams: 1 ntu-107-D98642009-1.pdf: 59050343 bytes, checksum: 66c6dafeaa6db43d0f8aeb5ed8b70ae4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………… i
ABSTRACT……………………………………………………………...…………… ii Significant………………………………………………………………..…………… iv Abbreviations…………………………………………………………….……...…… v Table of Contents………………………………………………………..…………… viii Chapter 1. Introduction 1.1 Immunoglobulin G antibodies.………………………………………...…..……… 1 1.2 Trastuzumab (Herceptin®).…………………………………………....……...…… 2 1.3 Fc glycosylation and interaction towards FcγRs……………………………..…… 3 1.4 Alternative mAb expression system: Pichia pastoris…………………………...… 4 1.5 Fc glycosylation engineering and pertinent glycosynthases…………………..….. 5 Chapter 2. Results and Discussion 2.1 Construction of plasmids in yeast strains………………….…………………….... 9 2.2 Expression, purification and characterization of recombinant trastuzumab expressed in P. pastoris………………….………………….………………..…… 15 2.3 Expression of a library of bacterial endoglycosudases and characterization of their de-glycosylation activity on glycoproteins……………... 21 2.4 ENGases catalyzed hydrolysis of glycans with C5-amine linker………………..... 30 2.5 EndoE and EndoP catalyzed hydrolysis of glycans with 2-aminobenzamide (2-AB) tag……………….………………….………………..………………….… 35 2.6 EndoE and EndoP catalyzed hydrolysis of glycans with peptide……………….… 43 2.7 De-glycosylation activity of EndoE for cleavage of high-mannose glycans on yeast-produced recombinant trastuzumab….………………..………………….… 45 2.8 Synthesis of homogeneous trastuzumab…….………………..…………………… 47 2.9 Transglycosylation test of selected ENGases mutants…………………………….. 53 2.10 Glycoengineered trastuzumab with strong FcγRIIIA binding affinity……..……. 56 Chapter 3. Conclusion…….………………….………………..………………….…. 58 Chapter 4. Discussion and Future Work………….………………..………………. 60 Chapter 5. Materials and Methods………….………………..………………….…. 62 5.1 Materials…….………………….………………..………………….….…………. 62 5.2 Construction of antibody expression vectors……..………………….….………… 62 5.3 Site-directed mutagenesis……..………………….….………………..…………... 63 5.4 Expression of enzymes……..………………….….………………..……………... 63 5.5 Transformation of antibody expression plasmids into P. pastoris…………….. 64 5.6 Transformation of antibody expression plasmids into GlycoSwitch® strains... 64 5.7 Fermentation conditions……..………………….….………………..………….. 65 5.8 Antibody purification……..………………….….………………..…………….... 65 5.9 SDS-PAGE detection of E. coli expressed ENGases and glycoengineered Herceptin antibodies……..………………….….………………..……………..... 65 5.10 Preparation of mono-GlcNAc-trastuzumab……..………………….….………. 66 5.11 Transglycosylation of mono-GlcNAc trastuzumab (rHer-G) with SGP.……….. 67 5.12 Western blot……..………………….….………………..……………………….. 67 5.13 Analysis of glycopeptides using LC-MS/MS…………..………………………... 68 5.14 FcγRIIIA analyte biotinylation…………..……………………….…………….... 69 5.15 Biolayer interferometry (BLI) analysis…..……………………….…………….... 69 5.16 Glycan microarray on NHS-activated glass slides……………….…………….... 70 5.17 Quantitative analysis of the substrate specificity by UPLC……….…………….. 71 References……..………………….….………………..……………………………… 72 Appendices……..………………….….………………..……………………………... 77 Appendix 1. SDS-PAGE of ENGases and their mutations expressed in E. coli BL21.. 78 Appendix 2. EndoE and EndoP catalyzed hydrolysis of A1 glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 79 Appendix 3. EndoE and EndoP catalyzed hydrolysis of A1F glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 80 Appendix 4. EndoE and EndoP catalyzed hydrolysis of A2 glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 81 Appendix 5. EndoE and EndoP catalyzed hydrolysis of A2F glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 82 Appendix 6. EndoE and EndoP catalyzed hydrolysis of NA2 glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 83 Appendix 7. EndoE and EndoP catalyzed hydrolysis of NA2F glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 84 Appendix 8. EndoE and EndoP catalyzed hydrolysis of NGA2 glycan with 2-AB tag evaluated by UPLC…….….………………..……………………………. 85 Appendix 9. EndoE and EndoP catalyzed hydrolysis of NGA2F glycan with 2-AB tag evaluated by UPLC…….….………………..………………………... 86 Appendix 10. EndoE and EndoP catalyzed hydrolysis of NA3 glycan with 2-AB tag evaluated by UPLC…….….………………..………………………... 87 Appendix 11. EndoE and EndoP catalyzed hydrolysis of NA3 glycan with 2-AB tag evaluated by UPLC…….….………………..………………………... 88 Appendix 12. EndoE and EndoP catalyzed hydrolysis of NGA3 (2,4,2) glycan with 2-AB tag evaluated by UPLC…….….………………..………………..... 89 Appendix 13. EndoE and EndoP catalyzed hydrolysis of NGA3F (2,4,2) glycan with 2-AB tag evaluated by UPLC…….….………………..………………..... 90 Appendix 14. EndoE and EndoP catalyzed hydrolysis of NGA3 (2,2,6) glycan with 2-AB tag evaluated by UPLC…….….………………..………………..... 91 Appendix 15. EndoE and EndoP catalyzed hydrolysis of NGA3F (2,4,2) glycan with 2-AB tag evaluated by UPLC…….….………………..………………..... 92 Appendix 16. EndoE and EndoP catalyzed hydrolysis of NGA4 (2,4,2,6) glycan with 2-AB tag evaluated by UPLC…….….……………………………... 93 Appendix 17. Cell growth rate of P. pastoris X33 and ΔOCH1 strains by OD600…... 94 | |
| dc.language.iso | en | |
| dc.subject | 均相化 | zh_TW |
| dc.subject | Fc醣體改造 | zh_TW |
| dc.subject | 畢赤酵母菌 | zh_TW |
| dc.subject | 內切醣?? | zh_TW |
| dc.subject | 賀癌平 | zh_TW |
| dc.subject | 醣修飾抗體 | zh_TW |
| dc.subject | Glycoengineered antibodies | en |
| dc.subject | Pichia | en |
| dc.subject | Trastuzumab | en |
| dc.subject | Endoglycosidase | en |
| dc.subject | Fc-glycosylation | en |
| dc.subject | Homogeneous | en |
| dc.title | 利用酵素法修飾酵母菌表現之重組蛋白上之醣分子以製備均相化抗體 | zh_TW |
| dc.title | Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳漢忠(Han-Chung Wu),吳宗益(Chung-Yi Wu),馬徹(Che Alex Ma),劉?睿(Je-Ruei Liu) | |
| dc.subject.keyword | 醣修飾抗體,畢赤酵母菌,賀癌平,內切醣??,Fc醣體改造,均相化, | zh_TW |
| dc.subject.keyword | Glycoengineered antibodies,Pichia,Trastuzumab,Endoglycosidase,Fc-glycosylation,Homogeneous, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201800085 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 57.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
