請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68004完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳克強 | |
| dc.contributor.author | Fu-Yu Hung | en |
| dc.contributor.author | 洪福佑 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:11:08Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2018-01-18 | |
| dc.identifier.citation | 5. References
Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880-883. Alinsug, M.V., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol 9:37. Aravind, L., and Iyer, L.M. (2002). The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biology 3. Aufsatz, W., Mette, M.F., van der Winden, J., Matzke, A.J., and Matzke, M. (2002). RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci US A 99 Suppl 4:16499-16506. Benhamed, M., Bertrand, C., Servet, C., and Zhou, D.X. (2006). Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893-2903. Bourbousse, C., Ahmed, I., Roudier, F., Zabulon, G., Blondet, E., Balzergue, S., Colot, V., Bowler, C., and Barneche, F. (2012). Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet 8:e1002825. Brosch, G., Ransom, R., Lechner, T., Walton, J.D., and Loidl, P. (1995). Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941-1950. Chen C.-Y. (2016) The protein interactome and gene regulatory network of the histone deacetylase HDA15 in Arabidopsis. Unpublished doctoral dissertation, National Taiwan University, Taipei. Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345-3353. Cheng, X.F., and Wang, Z.Y. (2005). Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758-768. Cigliano, R.A., Cremona, G., Paparo, R., Termolino, P., Perrella, G., Gutzat, R., Consiglio, M.F., and Conicella, C. (2013). Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol 163:431-440. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743. Earley, K., Lawrence, R.J., Pontes, O., Reuther, R., Enciso, A.J., Silva, M., Neves, N., Gross, M., Viegas, W., and Pikaard, C.S. (2006). Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283-1293. Fan, D., Dai, Y., Wang, X., Wang, Z., He, H., Yang, H., Cao, Y., Deng, X.W., and Ma, L. (2012). IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Res 40:8905-8916. Farre, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S.A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47-54. Feng, S., and Jacobsen, S.E. (2011). Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179-186. Gan, E.S., Xu, Y.F., Wong, J.Y., Goh, J.G., Sun, B., Wee, W.Y., Huang, J.B., and Ito, T. (2014). Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun 5:5098. Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., and Kay, S.A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109:3167-3172. Greenberg, M.V.C., Deleris, A., Hale, C.J., Liu, A., Feng, S.H., and Jacobsen, S.E. (2013). Interplay between Active Chromatin Marks and RNA-Directed DNA Methylation in Arabidopsis thaliana. Plos Genet 9:e1003946. Hanano, S., and Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172-3184. Hazen, S.P., Naef, F., Quisel, T., Gendron, J.M., Chen, H.M., Ecker, J.R., Borevitz, J.O., and Kay, S.A. (2009). Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 10:R17. He, R.S., and Kidder, B.L. (2017). H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells. Nucleic Acids Res 45:6427-6441. He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751-1754. Hemmes, H., Henriques, R., Jang, I.C., Kim, S., and Chua, N.H. (2012). Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. Plant Cell Physiol 53:2016-2029. Himanen, K., Woloszynska, M., Boccardi, T.M., De Groeve, S., Nelissen, H., Bruno, L., Vuylsteke, M., and Van Lijsebettens, M. (2012). Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. Plant J 72:249-260. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol 50:875-885. Huang, P.H., Chen, C.H., Chou, C.C., Sargeant, A.M., Kulp, S.K., Teng, C.M., Byrd, J.C., and Chen, C.S. (2011). Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol Pharmacol 79:197-206. Huang, W., Perez-Garcia, P., Pokhilko, A., Millar, A.J., Antoshechkin, I., Riechmann, J.L., and Mas, P. (2012). Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75-79. Jeong, J.H., Song, H.R., Ko, J.H., Jeong, Y.M., Kwon, Y.E., Seol, J.H., Amasino, R.M., Noh, B., and Noh, Y.S. (2009). Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4:e8033. Jeong, J.H., Song, H.R., Ko, J.H., Jeong, Y.M., Kwon, Y.E., Seol, J.H., Amasino, R.M., Noh, B., and Noh, Y.S. (2009). Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4:e8033. Jiang, D., Yang, W., He, Y., and Amasino, R.M. (2007). Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975-2987. Jones, M.A., Covington, M.F., DiTacchio, L., Vollmers, C., Panda, S., and Harmer, S.L. (2010). Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A 107:21623-21628. Joshi, P., Greco, T.M., Guise, A.J., Luo, Y., Yu, F., Nesvizhskii, A.I., and Cristea, I.M. (2013). The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672. Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N. (2016). Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. Plant Cell 28:696-711. Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193-195. Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001). Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162-166. Kim, K.C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357-2371. Kim, W.Y., Geng, R., and Somers, D.E. (2003). Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci U S A 100:4933-4938. Klose, R.J., Kallin, E.M., and Zhang, Y. (2006). JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715-727. Krichevsky, A., Zaltsman, A., Lacroix, B., and Citovsky, V. (2011). Involvement of KDM1C histone demethylase-OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proc Natl Acad Sci U S A 108:11157-11162. Kurdistani, S.K., Robyr, D., Tavazoie, S., and Grunstein, M. (2002). Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248-254. Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., et al. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202-1210. Lan, F., Nottke, A.C., and Shi, Y. (2008). Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20:316-325. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204-220. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., and Zhu, J.K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Dev 15:912-924. Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R. (2005). An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432-435. Lempe, J., Balasubramanian, S., Sureshkumar, S., Singh, A., Schmid, M., and Weigel, D. (2005). Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1:109-118. Li, C.L., Chen, C., Gao, L., Yang, S.G., Nguyen, V., Shi, X.J., Siminovitch, K., Kohalmi, S.E., Huang, S.Z., Wu, K.Q., et al. (2015). The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. Plos Genet 11:e1004944. Li, C.L., Gu, L.F., Gao, L., Chen, C., Wei, C.Q., Qiu, Q., Chien, C.W., Wang, S.K., Jiang, L.H., Ai, L.F., et al. (2016). Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48:687-+. Lindroth, A.M., Shultis, D., Jasencakova, Z., Fuchs, J., Johnson, L., Schubert, D., Patnaik, D., Pradhan, S., Goodrich, J., Schubert, I., et al. (2004). Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. Embo J 23:4286-4296. Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535-1539. Liu, X., Yang, S., Zhao, M., Luo, M., Yu, C.W., Chen, C.Y., Tai, R., and Wu, K. (2014). Transcriptional repression by histone deacetylases in plants. Mol Plant 7:764-772. Liu, X.C., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L.Y., Zhao, M.L., Yang, S.G., Tian, G., Cui, Y.H., et al. (2013). PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings. Plant Cell 25:1258-1273. Liu, X.C., Yu, C.W., Duan, J., Luo, M., Wang, K.C., Tian, G., Cui, Y.H., and Wu, K.Q. (2012). HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis. Plant Physiol 158:119-129. Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520-1523. Lu, F.L., Cui, X., Zhang, S.B., Jenuwein, T., and Cao, X.F. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715-U144. Lu, F.L., Li, G.L., Cui, X., Liu, C.Y., Wang, X.J., and Cao, X.F. (2008). Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. Journal of Integrative Plant Biol 50:886-896. Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W., Harada, J.J., et al. (2010). Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J 61:259-270. Lu, S.X., Knowles, S.M., Andronis, C., Ong, M.S., and Tobin, E.M. (2009). CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL Function Synergistically in the Circadian Clock of Arabidopsis. Plant Physiol 150:834-843. Lund, A.H., and van Lohuizen, M. (2004). Epigenetics and cancer. Genes Dev 18:2315-2335. Luo, M., Hung, F.Y., Yang, S.G., Liu, X.C., and Wu, K.Q. (2014). Histone Lysine Demethylases and Their Functions in Plants. Plant Mol Biol Rep 32:558-565. Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet 8:e1003114. Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696-1697. Malapeira, J., Khaitova, L.C., and Mas, P. (2012). Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109:21540-21545. Martin, T., Sharma, R., Sippel, C., Waegemann, K., Soll, J., and Vothknecht, U.C. (2006). A protein kinase family in Arabidopsis phosphorylates chloroplast precursor proteins. J Biol Chem 281:40216-40223. Mas, P., Alabadi, D., Yanovsky, M.J., Oyama, T., and Kay, S.A. (2003). Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223-236. Mas, P., Kim, W.Y., Somers, D.E., and Kay, S.A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567-570. Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000). Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002-1012. McClung, C.R., and Gutierrez, R.A. (2010). Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 20:588-598. Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13:1047-1061. Nagel, D.H., Doherty, C.J., Pruneda-Paz, J.L., Schmitz, R.J., Ecker, J.R., and Kay, S.A. (2015). Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. P Natl Acad Sci USA 112:E4802-E4810. Nagel, D.H., and Kay, S.A. (2013). Complexity in the Wiring and Regulation of Plant Circadian Networks (vol 22, pg R648, 2012). Curr Biol 23:95-96. Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N.H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22:594-605. Nalawansha, D.A., and Pflum, M.K. (2017). LSD1 substrate binding and gene expression are affected by HDAC1-mediated deacetylation. ACS Chem Biol 12:254-264. Oda-Yamamizo, C., Mitsuda, N., Sakamoto, S., Ogawa, D., Ohme-Takagi, M., and Ohmiya, A. (2016). The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves (vol 6, 23609, 2016). Sci Rep-Uk 6:35125. Onodera, Y., Haag, J.R., Ream, T., Costa Nunes, P., Pontes, O., and Pikaard, C.S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613-622. Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30:5036-5055. Para, A., Farre, E.M., Imaizumi, T., Pruneda-Paz, J.L., Harmon, F.G., and Kay, S.A. (2007). PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462-3473. Perales, M., and Mas, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19:2111-2123. Peret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., James, N., Casimiro, I., Perry, P., Syed, A., et al. (2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874-2885. Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., et al. (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16:1021-1034. Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481-1485. Rigal, M., Kevei, Z., Pelissier, T., and Mathieu, O. (2012). DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. Embo J 31:2981-2993. Rikimaru, T., Taketomi, A., Yamashita, Y., Shirabe, K., Hamatsu, T., Shimada, M., and Maehara, Y. (2007). Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72:69-74. Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat Biotechnol 29:24-26. Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S.K., Wang, A., Suka, N., and Grunstein, M. (2002). Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437-446. Rosa, S., Ntoukakis, V., Ohmido, N., Pendle, A., Abranches, R., and Shaw, P. (2014). Cell differentiation and development in Arabidopsis are associated with changes in histone dynamics at the single-cell level. Plant Cell 26:4821-4833. Rudolph, T., Yonezawa, M., Lein, S., Heidrich, K., Kubicek, S., Schafer, C., Phalke, S., Walther, M., Schmidt, A., Jenuwein, T., et al. (2007). Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26:103-115. Salome, P.A., Weigel, D., and McClung, C.R. (2010). The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22:3650-3661. Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Kiriyama, M., Fukai, I., Yamakawa, Y., and Fujii, Y. (2004). Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer 46:171-178. Saze, H., Shiraishi, A., Miura, A., and Kakutani, T. (2008). Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319:462-465. Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219-1229. Seo, P.J., Park, M.J., Lim, M.H., Kim, S.G., Lee, M., Baldwin, I.T., and Park, C.M. (2012). A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24:2427-2442. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941-953. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403:41-45. Stroud, H., Greenberg, M.V., Feng, S., Bernatavichute, Y.V., and Jacobsen, S.E. (2013). Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352-364. Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116-1120. Takeuchi, T., Yamazaki, Y., Katoh-Fukui, Y., Tsuchiya, R., Kondo, S., Motoyama, J., and Higashinakagawa, T. (1995). Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev 9:1211-1222. Tian, L., and Chen, Z.J. (2001). Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci U S A 98:200-205. Tian, L., Wang, J., Fong, M.P., Chen, M., Cao, H., Gelvin, S.B., and Chen, Z.J. (2003). Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics 165:399-409. Tran, H.T., Nimick, M., Uhrig, R.G., Templeton, G., Morrice, N., Gourlay, R., DeLong, A., and Moorhead, G.B. (2012). Arabidopsis thaliana histone deacetylase 14 (HDA14) is an alpha-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J 71:263-272. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811-816. Venturelli, S., Belz, R.G., Kamper, A., Berger, A., von Horn, K., Wegner, A., Bocker, A., Zabulon, G., Langenecker, T., Kohlbacher, O., et al. (2015). Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors. Plant Cell 27:3175-3189. Wang, L., Kim, J., and Somers, D.E. (2013). Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci U S A 110:761-766. Wang, Y., Wu, J.F., Nakamichi, N., Sakakibara, H., Nam, H.G., and Wu, S.H. (2011). LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell 23:486-498. Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660-672. Wang, Z.Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207-1217. Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F.R., Niesporek, S., Denkert, C., Dietel, M., et al. (2008). Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98:604-610. Wu, K., Malik, K., Tian, L., Brown, D., and Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol Biol 44:167-176. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225-234. Xu, C.R., Liu, C., Wang, Y.L., Li, L.C., Chen, W.Q., Xu, Z.H., and Bai, S.N. (2005). Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proc Natl Acad Sci U S A 102:14469-14474. Yang, H., Han, Z., Cao, Y., Fan, D., Li, H., Mo, H., Feng, Y., Liu, L., Wang, Z., Yue, Y., et al. (2012). A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet 8:e1002664. Yang, H., Mo, H., Fan, D., Cao, Y., Cui, S., and Ma, L. (2012). Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep 31:1297-1308. Yang, X.J., and Seto, E. (2003). Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 13:143-153. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173-184. Yu, C.W., Tai, R., Wang, S.C., Yang, P., Luo, M., Yang, S., Cheng, K., Wang, W.C., Cheng, Y.S., and Wu, K. (2017). HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. Plant Cell 29:1970-1983. Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009). A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952-1958. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. Zhao, Y.M., Lu, J., Sun, H., Chen, X., Huang, W.F., Tao, D., and Huang, B.Q. (2005). Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem Bioph Res Co 326:811-816. Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196-1204. Zhou, X., and Ma, H. (2008). Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence. BMC Evol Biol 8:294. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68004 | - |
| dc.description.abstract | 摘要
在真核生物系統中,組蛋白修飾藉由改變染色體結構而扮演一個調控基因表達的重要角色。其中組蛋白的乙醯化(acetylation)和組蛋白H3K4的甲基化(H3K4 methylation)是啟動基因表達的重要修飾之一,而組蛋白去乙醯化酶(HDACs)以及H3K4去甲基化酶(H3K4 demethylases)皆是抑制基因表達的重要酵素。在酵母及動物系統中已經發現 HDACs 和 Lysine-Specific Demethylase 1(LSD1)在同一個蛋白複合體參與調控基因表達。我們也發現了在阿拉伯芥中的 LSD1-LIKE 1(LDL1) 以及 LDL2 會直接與 HDA6 蛋白交互作用,表示他們可能也會共同調控基因表達。進一步我們利用 ChIP-seq 發現了1895個基因為LDL1 和 HDA6 的共同靶基因。透過 Gene Ontology(GO)分析,我們發現這些LDL1 和 HDA6 的共同靶基因大多參與植物開花以及生長發育的負向調控。在hda6/ldl1/ldl2植物中也發現了延遲開花以及生長遲緩的表現型。 我們在 GO 分析中也發現 LDL1 和 HDA6 的共同靶基因包括許多生物時鐘基因。生物時鐘在植物生長發育階段都扮演重要調控角色。目前已發現許多轉錄因子參與調控生物時鐘,形成一個複雜的回饋調節網路。生物時鐘之中心節律有幾個主要轉錄因子,包括在清晨大量表達的 CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) 、 LHY (LATE ELONGATED HYPOCOTYL) 以及在傍晚大量表達的TOC1 (TIMING OF CAB EXPRESSION 1),它們彼此互相抑制並在每日形成一個循環。前人研究中指出組蛋白修飾在生物時鐘中心節律的調控扮演重要角色,但其調控機制仍未被清楚瞭解。我們發現 LDL1、LDL2 以及 HDA6 可以和生物時鐘中心節律的轉錄因子 CCA1、 LHY 交互作用,並透過組蛋白修飾來調控 TOC1。這個的結果對於組蛋白修飾如何參與調控生物時鐘之中心節律,提供了一個新的可能的調控機制。 | zh_TW |
| dc.description.abstract | Abstract
Histone modification and DNA methylation are important epigenetic marks in eukaryotic cells. The functional consequences of histone modifications can directly cause structural changes to chromatin to activate or repress gene expression. Histone acetylation and H3K4 methylation are important gene activation markers. Histone deacetylases (HDACs) and H3K4 demethylases can act as important transcription corepresser. In yeast and animal systems, HDACs and H3K4 Lysine-Specific Demethylase 1 (LSD1) can interact with each other and they were identified as the core components of several multi-protein complexes. In this research, we found that LSD1-LIKE 1 (LDL1) and LDL2 can interact with the histone deacetylase HDA6 in Arabidopsis. Furthermore, 1895 co-targeted genes of HDA6 and LDL1 were identified by using ChIP-sequencing assays. These co-targeted genes were significantly associated with negative regulation of many different biological processes including growth, flowering and circadian rhythm in the Gene Ontology (GO) analysis. hda6/ldl1/ldl2 triple mutant plants displayed delayed growth rate and strong late flowering phenotypes. Together, these results indicated that the HDA6-LDL1/2 complex generally act as an positive regulator of plant growth and development. In Arabidopsis, the circadian clock central oscillator genes are important cellular components for generating and maintaining circadian rhythms. Recent studies indicate that histone modifications play an important role in the regulation of the central oscillators. However, the regulatory relationship between histone modifications and the circadian clock genes remains largely unclear. In this study, we found that HDA6, LDL1 and LDL2 can interact with morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) to repress the expression of evening gene TIMING OF CAB EXPRESSION 1 (TOC1) by histone demetylation and deacetylaion. These results provide new insight into the molecular mechanism of how the circadian clock central oscillator genes are regulated through histone modifications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:11:08Z (GMT). No. of bitstreams: 1 ntu-106-D01b42004-1.pdf: 31544295 bytes, checksum: 9727f56c2cf9c9d26a45a26a23b6fc05 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 1. Introduction 1 1.1 Histone Demethylases 1 1.2 Histone Deacetylases and HDAC Complexes 3 1.3 Circadian Clock and Histone Modifications 5 1.4 The Specific Aims of This Study 7 2. Materials and Methods 9 2.1 Plant materials and growth conditions 9 2.2 Plasmid construction and plant transformation 9 2.3 Bimolecular fluorescence (BiFC) complementation assays 10 2.4 Yeast two-hybrid (Y2H) assays 10 2.5 Co- Immunoprecipitation (Co-IP) assays 10 2.6 Quantitative reverse transcriptase PCR analysis 11 2.7 Protoplast transient assays 11 2.8 Chromatin immunoprecipitation (ChIP) assays 12 2.9 ChIP-seq and data analyses 12 3. Results 15 3.1 Genome-wide occupancy profiles of HDA6 and LDL1 15 3.1.1 LDL1 and LDL2 directly interact with HDA6 15 3.1.2 Identification of genome-wide binding sites of HDA6 and LDL1 15 3.1.3 HDA6-LDL1 co-targeted genes are involved in negative regulation of multiple biological processes 17 3.2 The HDA6/LDL1/2 complex regulates circadian clock central oscillators 18 3.2.1 LDL1 and LDL2 directly interact with CCA1 and LHY. 18 3.2.2 LDL1, LDL2 and HDA6 acts synergistically to repress the TOC1 expression by histone deacetylation and H3K4 demethylation 19 3.2.3 The LDL1-HDA6 complex interacts with CCA1 and targets directly to the TOC1 promoter 20 3.2.4 LDL1 and CCA1 co-target genes involved in the circadian rhythm 22 3.2.5 LDL1/LDL2 and HDA6 also regulate CCA1/LHY expression 24 3.3 HDA6/LDL1/2 complex positive regulate flowering and growth in Arabidopsis 25 3.3.1 Arabidopsis HDA6 and LDL1/2 act synergistically to regulate flowering time in multiple regulation pathways 25 3.3.2 HDA6 and LDL1/2 act synergistically to regulate Arabidopsis growth 26 3.3.3 Genes involved in flowering regulation and growth are synergistically regulated by HDA6 and LDL1/2 27 3.4 Functional Correlation Between HDA6 and the H3K9 demethylae JMJ25/IBM1 28 3.4.1 HDA6 direct interacts with JMJ25/IBM1 in HD and JMJ-C Domain 28 3.4.2 The jmj25/ibm1 mutant phenotype can be partially rescued by hda6 29 3.4.3 HDA6 Targets on JMJ25/IBM1 gene-body and affect its transcription variation 30 4. Discussion 31 4.1 LDL1/2 and HDA6 form a histone modification complex 31 4.2 The HDA6-LDL1/2 complex is important in regulation of circadian clock central oscillators 32 4.3 The HDA6-LDL1/2 complex is a positive regulator of growth and development 34 4.4 HDA6 acts as a negative regulator of the JMJ25/IBM1 function 36 5. References 39 Figures 55 Tables 97 Appendix 105 | |
| dc.language.iso | en | |
| dc.subject | LDL1 | zh_TW |
| dc.subject | ChIP-seq | zh_TW |
| dc.subject | HDA6 | zh_TW |
| dc.subject | 開花調控 | zh_TW |
| dc.subject | TOC1 | zh_TW |
| dc.subject | CCA1/LHY | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 生物時鐘 | zh_TW |
| dc.subject | Flowering | en |
| dc.subject | LDL1 | en |
| dc.subject | ChIP-Seq | en |
| dc.subject | circadian clock | en |
| dc.subject | CCA1/LHY | en |
| dc.subject | TOC1 | en |
| dc.subject | HDA6 | en |
| dc.subject | Arabidopsis | en |
| dc.title | 阿拉伯芥LDL1/2與HDA6參與生物時鐘中心節律調節 | zh_TW |
| dc.title | Arabidopsis LDL1/2 and HDA6 regulate the circadian clock central oscillators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳素幸,涂世隆,蔡皇龍,張英?,陳伯仰 | |
| dc.subject.keyword | HDA6,LDL1,ChIP-seq,生物時鐘,CCA1/LHY,TOC1,開花調控,阿拉伯芥, | zh_TW |
| dc.subject.keyword | HDA6,LDL1,ChIP-Seq,circadian clock,CCA1/LHY,TOC1,Flowering,Arabidopsis, | en |
| dc.relation.page | 277 | |
| dc.identifier.doi | 10.6342/NTU201800099 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 30.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
