請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67990完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Chia-Yen Chiang | en |
| dc.contributor.author | 江佳晏 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:02:33Z | - |
| dc.date.available | 2027-07-17 | |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-18 | |
| dc.identifier.citation | [1] E. Puukilainen, T. Rasilainen, M. Suvanto et al., Superhydrophobic polyolefin surfaces: controlled micro-and nanostructures. Langmuir 23, 7263-7268 (2007).
[2] J. Drelich, E. Chibowski, Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir 26, 18621-18623 (2010). [3] W.-H. Ting, C.-C. Chen, S. A. Dai et al., Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry 19, 4819-4828 (2009). [4] J. Lv, Y. Song, L. Jiang et al., Bio-inspired strategies for anti-icing. ACS Nano 8, 3152-3169 (2014). [5] L. Song, R. K. Bly, J. N. Wilson et al., Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid rod‐polymers. Advanced Materials 16, 115-118 (2004). [6] S. J. Haswell, V. Skelton, Chemical and biochemical microreactors. TrAC Trends in Analytical Chemistry 19, 389-395 (2000). [7] L. Li, C. Chen, J. Li et al., Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. Journal of Materials Chemistry 19, 2789-2796 (2009). [8] E. Nomura, A. Hosoda, M. Takagaki et al., Self-organized honeycomb-patterned microporous polystyrene thin films fabricated by calix [4] arene derivatives. Langmuir 26, 10266-10270 (2010). [9] B. Erdogan, L. Song, J. N. Wilson et al., Permanent bubble arrays from a cross-linked poly (para-phenyleneethynylene): picoliter holes without microfabrication. Journal of the American Chemical Society 126, 3678-3679 (2004). [10] P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry 88, 5935-5944 (1984). [11] H. Ko, S. Singamaneni, V. V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4, 1576-1599 (2008). [12] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews 108, 462-493 (2008). [13] M. D. Porter, R. J. Lipert, L. M. Siperko et al., SERS as a bioassay platform: fundamentals, design, and applications. Chemical Society Reviews 37, 1001-1011 (2008). [14] K. C. Bantz, A. F. Meyer, N. J. Wittenberg et al., Recent progress in SERS biosensing. Physical Chemistry Chemical Physics 13, 11551-11567 (2011). [15] H. Yabu, M. Shimomura, Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 17, 5231-5234 (2005). [16] E. Bormashenko, A. Schechter, O. Stanevsky et al., Free‐standing, thermostable, micrometer‐scale honeycomb polymer films and their properties. Macromolecular Materials and Engineering 293, 872-877 (2008). [17] D. Beattie, K. H. Wong, C. Williams et al., Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules 7, 1072-1082 (2006). [18] L. Kong, R. Dong, H. Ma et al., Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 29, 4235-4241 (2013). [19] G. Widawski, M. Rawiso, B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387-389 (1994). [20] S. A. Jenekhe, X. L. Chen, Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 283, 372-375 (1999). [21] U. H. F. Bunz, Breath figures as a dynamic templating method for polymers and nanomaterials. Advanced Materials 18, 973-989 (2006). [22] S. Hang, W. Lixin, Ordered honeycomb-patterned films via breath figures. Progress in Chemistry 22, 1784-1798 (2010). [23] N. Maruyama, T. Koito, J. Nishida et al., Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327, 854-856 (1998). [24] M. Srinivasarao, D. Collings, A. Philips et al., Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79-83 (2001). [25] D. Beysens, Dew nucleation and growth. Comptes Rendus Physique 7, 1082-1100 (2006). [26] A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 39, 510-554 (2014). [27] K. H. Wong, M. Hernández-Guerrero, A. M. Granville et al., Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials 13, 213-223 (2006). [28] M. H. Stenzel, C. Barner‐Kowollik, T. P. Davis, Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44, 2363-2375 (2006). [29] M. Orlov, I. Tokarev, A. Scholl et al., PH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules 40, 2086-2091 (2007). [30] L. Roszol, T. Lawson, V. Koncz et al., Micropatterned polyvinyl butyral membrane for acid−base diodes. The Journal of Physical Chemistry B 114, 13718-13725 (2010). [31] J. Peng, Y. Han, Y. Yang et al., The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447-452 (2004). [32] E. Bormashenko, R. Pogreb, O. Stanevsky et al., Self‐assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 16, 299-304 (2005). [33] A. E. Saunders, J. L. Dickson, P. S. Shah et al., Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 73, 031608 (2006). [34] M. H. Stenzel‐Rosenbaum, T. P. Davis, A. G. Fane et al., Porous polymer films and honeycomb structures made by the self‐organization of well‐defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 40, 3428-3432 (2001). [35] J. Z. Chen, Q. L. Zhao, H. C. Lu et al., Polymethylene‐b‐polystyrene diblock copolymer: Synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 48, 1894-1900 (2010). [36] A. S. de León, A. Muñoz‐Bonilla, M. Fernández‐García et al., Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 50, 851-859 (2012). [37] V. Deepak, S. Asha, Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: synthesis, morphology, and mechanism of pore formation. The Journal of Physical Chemistry B 110, 21450-21459 (2006). [38] A. Carlmark, C. Hawker, A. Hult et al., New methodologies in the construction of dendritic materials. Chemical Society Reviews 38, 352-362 (2009). [39] D. Tomalia, H. Baker, J. Dewald et al., A new class of polymers: starburst-dendritic. Polymer Journal 17, 117-132 (1985). [40] C. Hawker, J. M. Fréchet, A new convergent approach to monodisperse dendritic macromolecules. Journal of the Chemical Society, Chemical Communications, 1010-1013 (1990). [41] C. X. Cheng, Y. Tian, Y. Q. Shi et al., Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21, 6576-6581 (2005). [42] L. A. Connal, R. Vestberg, C. J. Hawker et al., Dramatic morphology control in the fabrication of porous polymer films. Advanced Functional Materials 18, 3706-3714 (2008). [43] F. Gong, X. Cheng, S. Wang et al., Biodegradable comb-dendritic tri-block copolymers consisting of poly (ethylene glycol) and poly (l-lactide): synthesis, characterizations, and regulation of surface morphology and cell responses. Polymer 50, 2775-2785 (2009). [44] S.-J. Hsieh, C.-C. Wang, C.-Y. Chen, Self-assembling microporous matrix from dendritic−linear copolymers based on a solvent-induced phase separation mechanism. Macromolecules 42, 4787-4794 (2009). [45] P. Lundberg, M. V. Walter, M. I. Montañez et al., Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polymer Chemistry 2, 394-402 (2011). [46] Y. Zhu, R. Sheng, T. Luo et al., Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers: surface morphology control and biomedical application as scaffolds for cell growth. ACS Applied Materials & Interfaces 3, 2487-2495 (2011). [47] C. P. Chen, S. A. Dai, H. L. Chang et al., Facile approach to polyurea/malonamide dendrons via a selective ring‐opening addition reaction of azetidine‐2, 4‐dione. Journal of Polymer Science Part A: Polymer Chemistry 43, 682-688 (2005). [48] C.-C. Chang, T.-Y. Juang, W.-H. Ting et al., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 128, 157-165 (2011). [49] Y.-A. Su, W.-F. Chen, T.-Y. Juang et al., Honeycomb-like polymeric films from dendritic polymers presenting reactive pendent moieties. Polymer 55, 1481-1490 (2014). [50] C.-H. Wu, W.-H. Ting, Y.-W. Lai et al., Tailored honeycomb-like polymeric films based on amphiphilic poly(urea/malonamide) dendrons. RSC Advances 6, 91981-91990 (2016). [51] C. Raman, K. Krishnan, hν o hν. Nature 121, 501 (1928). [52] R. Singh, CV Raman and the discovery of the Raman effect. Physics in Perspective 4, 399-420 (2002). [53] H. J. Butler, L. Ashton, B. Bird et al., Using Raman spectroscopy to characterize biological materials. Nature Protocols 11, 664-687 (2016). [54] W. E. Doering, S. Nie, Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 106, 311-317 (2002). [55] N. Felidj, J. Aubard, G. Levi et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters 82, 3095-3097 (2003). [56] S. Nie, S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106 (1997). [57] K. Kneipp, Y. Wang, H. Kneipp et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 78, 1667 (1997). [58] W. E. Doering, M. E. Piotti, M. J. Natan et al., SERS as a foundation for nanoscale, optically detected biological labels. Advanced Materials 19, 3100-3108 (2007). [59] W. Xie, S. Schlucker, Medical applications of surface-enhanced Raman scattering. Physical Chemistry Chemical Physics 15, 5329-5344 (2013). [60] D.-W. Li, W.-L. Zhai, Y.-T. Li et al., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 181, 23-43 (2013). [61] S. Pang, T. Yang, L. He, Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 85, 73-82 (2016). [62] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977). [63] M. G. Albrecht, J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 99, 5215-5217 (1977). [64] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews 27, 241-250 (1998). [65] K. L. Kelly, E. Coronado, L. L. Zhao et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B-Condensed Phase 107, 668-677 (2003). [66] A. J. Haes, R. P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 379, 920-930 (2004). [67] F. J. García-Vidal, J. Pendry, Collective theory for surface enhanced Raman scattering. Physical Review Letters 77, 1163 (1996). [68] E. Hao, G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics 120, 357-366 (2004). [69] H. H. Wang, C. Y. Liu, S. B. Wu et al., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 18, 491-495 (2006). [70] J. Zhao, A. O. Pinchuk, J. M. McMahon et al., Methods for describing the electromagnetic properties of silver and gold nanoparticles. Accounts of Chemical Research 41, 1710-1720 (2008). [71] S. E. Bell, M. R. McCourt, SERS enhancement by aggregated Au colloids: effect of particle size. Physical Chemistry Chemical Physics 11, 7455-7462 (2009). [72] S. L. Kleinman, R. R. Frontiera, A.-I. Henry et al., Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical Physics 15, 21-36 (2013). [73] C. E. Talley, J. B. Jackson, C. Oubre et al., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Letters 5, 1569-1574 (2005). [74] C. J. Orendorff, A. Gole, T. K. Sau et al., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical Chemistry 77, 3261-3266 (2005). [75] L. Guerrini, D. Graham, Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews 41, 7085-7107 (2012). [76] H. Ma, J. Hao, Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chemical Society Reviews 40, 5457-5471 (2011). [77] S. Yang, Y. Lei, Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 3, 2768-2782 (2011). [78] S. Yang, M. I. Lapsley, B. Cao et al., Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Advanced Functional Materials 23, 720-730 (2013). [79] G. L. Liu, L. P. Lee, Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 87, 074101 (2005). [80] H. Ma, J. Hao, Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chemistry 16, 655-660 (2010). [81] M. A. Hayat, Colloidal gold: principles, methods, and applications. (Elsevier, 2012). [82] M. Faraday, The Bakerian lecture: experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 147, 145-181 (1857). [83] G. Zhang, J. B. Jasinski, J. L. Howell et al., Tunability and stability of gold nanoparticles obtained from chloroauric acid and sodium thiosulfate reaction. Nanoscale Research Letters 7, 337 (2012). [84] Y.-Y. Yu, S.-S. Chang, C.-L. Lee et al., Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B 101, 6661-6664 (1997). [85] S. Link, M. Mohamed, M. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B 103, 3073-3077 (1999). [86] B. An, M. Li, J. Wang et al., Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Frontiers of Chemical Science and Engineering 10, 360-382 (2016). [87] M. Hu, J. Chen, Z.-Y. Li et al., Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews 35, 1084-1094 (2006). [88] J. Kimling, M. Maier, B. Okenve et al., Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B 110, 15700-15707 (2006). [89] J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55-75 (1951). [90] H. Xia, S. Bai, J. Hartmann et al., Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Langmuir 26, 3585-3589 (2010). [91] V. K. LaMer, R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society 72, 4847-4854 (1950). [92] L. Bahrig, S. G. Hickey, A. Eychmüller, Mesocrystalline materials and the involvement of oriented attachment – a review. CrystEngComm 16, 9408-9424 (2014). [93] Y. Ou, L.-Y. Wang, L.-W. Zhu et al., In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced Raman scattering (SERS) substrates. The Journal of Physical Chemistry C 118, 11478-11484 (2014). [94] H.-y. Chen, J.-l. Liu, W.-c. Xu et al., Selective assembly of silver nanoparticles on honeycomb films and their surface-enhanced Raman scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 506, 782-788 (2016). [95] D. A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 30, 294-324 (2005). [96] C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671 (2012). [97] W. Haiss, N. T. Thanh, J. Aveyard et al., Determination of size and concentration of gold nanoparticles from UV-vis spectra. Analytical Chemistry 79, 4215-4221 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67990 | - |
| dc.description.abstract | 本實驗成功開發一新型的表面增強拉曼散射基板(surface-enhanced Raman scattering substrates, SERS substrates),因具有三維規則蜂窩狀孔洞結構,將可有效地改善拉曼訊號之偵測靈敏度及再現性,應用於快速檢測多種化合物。
此三維規則排列之蜂窩狀孔洞結構以polyurethane-co-azetidine-2,4-dione (PU-PAZ)作為材料,於呼吸法(breath figure method)的製備方式中,PU-PAZ高分子結構中的兩性型樹枝狀高分子能穩定水分子及高分子溶液間的界面,並控制水分子整齊排列於溶液表面或深入其中的自組裝現象,等到水分子及溶劑完全揮發即得到規整的孔洞結構。以不同相對濕度及高分子溶液濃度來調控孔洞大小及排列整齊度,再附著金奈米粒子製備出多層孔洞結構之SERS基板,與表面具金之平膜基板比較SERS放大效果。 基板的檢測靈敏度將以增強因子(enhancement factors, EF)來量化,計算具有孔洞結構SERS基板的EF值約為106,遠大於對照組的平膜SERS基板(平膜基板之EF值為104)。接著以不同深度的共軛焦拉曼光譜掃描及SEM圖像,佐證本實驗所推論於兩種結構的SERS放大機制差異,顯示多孔洞SERS基板因表面及三維孔洞結構中皆佈滿金奈米粒子,可由鄰近粒子間的熱點效應(hot-spots resonance effects),大幅增強散射於金屬表面電磁場之待測物拉曼訊號;此外,雷射可於孔洞腔體進行多次反射,可增加被照射之金奈米粒子因表面電漿子共振(surface plasmon)產生熱點效應的機率,因此,三維孔洞基板同時有表面及孔洞內部加成的SERS訊號,故較二維平面之基板擁有較優良之SERS效應。 本實驗亦討論金奈米粒子的粒徑大小、孔洞結構之表面形貌等變因,對SERS基板檢測能力的影響,結果顯示粒徑較大之金奈米粒子可引發較強之熱點效應,能增進基板偵測靈敏度;而孔洞大小及排列規則度也對訊號偵測靈敏度及再現性扮演重要的因素。該SERS基板除了能快速放大極微量待測物的拉曼訊號以利檢測,亦可用於不同化合物分子的偵測,如在針對R6G分子的偵測極限濃度(Limitation of detection, LOD)可達到10-8 M,且找到濃度介於10-5至10-8 M的檢量線以利未來的應用。 關鍵字:表面增強拉曼散射、蜂窩狀孔洞結構、呼吸法、金奈米粒子、熱點效應 | zh_TW |
| dc.description.abstract | Novel surface-enhanced Raman scattering (SERS) substrates with three-dimensional (3D) porous structures have been developed for effectively improving the sensitivity and reproducibility of SERS, which can rapidly detect small molecules. Periodical arrays of the honeycomb-like substrates were fabricated by self-assembling polyurethane-co-azetidine-2,4-dione (PU-PAZ) polymers. PU-PAZ comprising amphiphilic dendrons could stabilize the interfaces between the water droplets and polymer solution, and then organize into regular porous structures through the breath figure method. Subsequently, SERS substrates were fabricated by immobilizing gold nanoparticles (AuNPs) onto the polymer films with various 3D honeycomb-like porous structures, controlled by different PU-PAZ concentrations and relative humidities. Results show that surface enhancement factors of honeycomb-like substrates as large as 106 are much higher than that of flat-film substrates (control group) due to enormous accumulation of hot-spots resonance effects in the 3D porous structure as verified through Raman mapping at various positions of the z-axis. Furthermore, the particle size effects were evaluated by immobilized different sizes of AuNPs on the honeycomb-like substrates, indicating larger AuNPs could induce more pronounced hot-spots effects as verified by the broad scattering peak of aggregating AuNPs. The generation of hot-spots resonance to enhance Raman intensity is strongly dependent on the diameter of AuNPs, the pore sizes and distributions of the 3D honeycomb-like porous substrates. Such substrates are ready for label-free and rapid SERS detection.
Keywords:surface-enhanced Raman scattering (SERS); breath figure; honeycomb-like polymeric films; gold nanoparticles; hot-spots resonance effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:02:33Z (GMT). No. of bitstreams: 1 ntu-106-R04549007-1.pdf: 8883155 bytes, checksum: d13ea88e07e510857247c72559bfdb5c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 壹、緒論 1 貳、文獻回顧 3 2.1 具表面微結構之蜂窩狀高分子材料 3 2.1.1 Breath Figures法之機制 3 2.1.2 應用於Breath Figures方法之高分子 6 2.1.2.1 規則樹枝狀高分子應用於製備蜂窩狀孔洞高分子膜 11 2.1.2.2 poly(urea/malonamide) dendrons應用於製備蜂窩狀孔洞高分子膜 16 2.2 表面增強拉曼散射 24 2.2.1 拉曼光譜之簡介及原理 24 2.2.2 表面增強拉曼散射之簡介及原理 25 2.2.3 表面增強拉曼散射之應用 27 2.3 金奈米粒子 28 2.3.1 金奈米粒子之性質與結構 28 2.3.2 金奈米粒子之合成方式及生成機制 31 2.4 研究動機 33 參、實驗內容 34 3.1 藥品及溶劑 34 3.2 實驗儀器 36 3.3 實驗流程圖 38 3.4 實驗步驟 39 3.4.1 金奈米粒子之合成 39 3.4.2 Isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD) 之合成 40 3.4.3 C18系列polyurea/malonamide dendrons 之合成 41 3.4.3.1 [G-0.5]-C18之合成 41 3.4.3.2 [G-1]-C18之合成 42 3.4.3.3 [G-1.5]-C18之合成 42 3.4.4 鏈延長劑之合成 42 3.4.4.1 DEA-diol之合成 42 3.4.4.2 [G-1.5]-C18-diol之合成 43 3.4.5 側鏈具反應官能基之PU-PAZ高分子之合成 44 3.4.6 規則蜂窩狀孔洞高分子薄膜之製備 44 3.4.7 平滑高分子薄膜之製備 45 3.4.8 具金奈米粒子之蜂窩狀孔洞SERS基板之製備 45 3.4.9 表面具金奈米粒子之平膜SERS基板之製備 45 3.4.10 表面增強拉曼散射之檢測方式 46 肆、結果與討論 47 4.1 金奈米粒子之合成及鑑定 47 4.2 IDD之合成及結構鑑定 50 4.3 C18系列polyurethane/malonamide dendrons 之合成及結構鑑定 53 4.3.1 [G-0.5]-C18之合成及結構鑑定 53 4.3.2 [G-1]-C18之合成及結構鑑定 54 4.3.3 [G-1.5]-C18之合成及結構鑑定 56 4.4 鏈延長劑之合成及結構鑑定 58 4.4.1 DEA-diol之合成及結構鑑定 58 4.4.2 [G-1.5]-C18-diol之合成及結構鑑定 59 4.5 側鏈具反應官能基之PU-PAZ高分子之化學結構分析 61 4.6 不同變因對於規則蜂窩狀孔洞排列之影響 62 4.6.1 高分子溶液濃度對於蜂窩狀孔洞排列之影響 62 4.6.2 相對溼度對於蜂窩狀孔洞排列之影響 64 4.7 具金奈米粒子之蜂窩狀高分子SERS複合基板之分析 65 4.7.1 三維結構對SERS效應之影響及其機制 65 4.7.2 孔徑大小及排列規整度對SERS效應靈敏度及再現性之影響 70 4.7.3 不同金奈米粒子大小對於SERS效應的之影響 74 4.7.4 SERS基板之極限偵測濃度分析 77 4.7.5 SERS基板之應用分析 79 伍、結論及未來展望 81 陸、參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 呼吸法 | zh_TW |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 蜂窩狀孔洞結構 | zh_TW |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 熱點效應 | zh_TW |
| dc.subject | surface-enhanced Raman scattering (SERS) | en |
| dc.subject | breath figure | en |
| dc.subject | hot-spots resonance effects | en |
| dc.subject | gold nanoparticles | en |
| dc.subject | honeycomb-like polymeric films | en |
| dc.title | 具金奈米粒子之蜂窩狀孔洞高分子薄膜基板應用於表面增強拉曼散射檢測 | zh_TW |
| dc.title | Gold Nanoparticles Immobilized on Honeycomb-like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉定宇(Ting-Yu Liu) | |
| dc.contributor.oralexamcommittee | 童世煌(Shih-Huang Tung),駱俊良(Chun-Liang Lo) | |
| dc.subject.keyword | 表面增強拉曼散射,蜂窩狀孔洞結構,呼吸法,金奈米粒子,熱點效應, | zh_TW |
| dc.subject.keyword | surface-enhanced Raman scattering (SERS),breath figure,honeycomb-like polymeric films,gold nanoparticles,hot-spots resonance effects, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201701569 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 8.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
