Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67949
標題: 以分子動力模擬探討高熵合金之疊差能與力學性質
Mechanisms and Stacking Fault Energy Enhancing Mechanical Properties in CoCrFeMnNi High-entropy Alloy: A Molecular Dynamics Simulation-based Study
作者: Kuan-Ting Chen
陳冠廷
指導教授: 陳俊杉(Chuin-Shan Chen)
關鍵字: 高熵合金,疊差,疊差能,孿晶,變形機制,變形路徑,貝式最佳化,
high entropy alloy,stacking fault,stacking fault energy,twin,deformation mechanism,deformation evolution,Bayesian optimization,
出版年 : 2020
學位: 碩士
摘要: 高熵合金優秀的機械性質一直以來都是重要的研究課題,其中能維持fcc單相的Cantor alloy系統更因擁有高強度、高延展性及可擴展性而受到許多人的關注。本研究透過疊差能建立了Cantor alloy變形機制及其對力學性質影響的連結,使得合金調配有更堅實的理論基礎,並針對改進力學性質提出配比建議。透過力學機制與機械性質間的連結,降低了高熵合金配比研發的複雜性,加速高熵合金研發的進程。
藉由分子動力模擬及OVITO視覺化軟體,拉伸試驗、疊差能模擬及過程中缺陷的演進得以被視覺化,機械性質和變形機制也可以有效的分類。疊差、內部疊差、外部疊差、孿晶和hcp transformation induced plasticity (TRIP)透過自行開發的缺陷分類演算法得以分類並視覺化,變形機制的探討也因此有了比較堅實的物理基礎。
本研究結果吻合文獻提出,內部疊差能對延展性有一最佳的區間,可以最佳化合金的延展性。也由此分類出四種不同延展性表現的合金類別,對於其中的缺陷演進、變形路徑可以有更細微的觀察與探討。並分類出三種變形路徑,分別為gliding induced twining (GIT)、bundled twin growth (BTG)和bulk hcp TRIP;疊差能較高者會透過疊差的滑移延展孿晶,而較低者通常能透過差排滑移延續孿晶的成長。Hcp TRIP則能進一步提供更多滑移空間,因而增加合金的延展性。在不同機制的交互影響下,即使變形路徑不同,還是有可能會有高延展性,其關鍵在於孿晶的生長與長度。而同時擁有GIT、BTG變形路徑組合的配比通常能獲得高強度與高延展性。最後,本研究也透過貝式最佳化成功發現了更高強度的合金配比。
Reasons for the great mechanical attributes of high entropy alloys (HEAs) have been an important question to answer. In addition, Cantor alloys with fcc single phase have great expansibility in mechanical performance among other HEAs. In this work, connection between mechanical performance and deformation mechanisms was built, providing more solid background for compositional tuning as well as guidance for compositional tuning. Through the linkage between mechanical performance and deformation mechanisms, the design complexity of HEA is much lower, thus boosts the progress of HEA studies.
Molecular dynamics simulations of tensile and stacking fault energy were conducted for observation of micro mechanisms. Stacking fault, intrinsic stacking fault, extrinsic stacking faults, twin and hcp transformation induced plasticity (TRIP) were classified and visualized through OVITO, of which defect evolutions and deformation maps were concluded accordingly.
An optimum region of intrinsic/extrinsic stacking fault energy for higher ductility was obtained, where was later classified into four ductile types. Deformation evolution also were studied with respect to three different deformation mechanisms: gliding induced twinning (GIT), bundled twin growth (BTG) and bulk hcp TRIP. Growth and propagation of twins was found crucial for prolongation of HEAs, and a positive relation between strength and stacking energy was inducted. Better strength and ductility could be accomplished by controlling stacking fault energy while combining GIT and BTG. Bayesian optimization also was utilized for compositional predictions, of which compositions with much higher strength and product of ultimate tensile strength and total elongation (PSE) was found.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67949
DOI: 10.6342/NTU202003457
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1408202016512300.pdf
  目前未授權公開取用
12.47 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved