Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67917
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳美如
dc.contributor.authorYen-Tzu Liaoen
dc.contributor.author廖晏慈zh_TW
dc.date.accessioned2021-06-17T01:57:58Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-07-20
dc.identifier.citationReferences
Amon, W., and P.J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev Med Virol. 15:149-156.
Arvin A, C.-F.G., Mocarski E, et al. 2007. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis.
Bigalke, J.M., and E.E. Heldwein. 2015. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. The EMBO journal. 34:2921-2936.
Bigalke, J.M., and E.E. Heldwein. 2016. Nuclear Exodus: Herpesviruses Lead the Way. In Annual Review of Virology, Vol 3. Vol. 3. L.W. Enquist, editor. Annual Reviews, Palo Alto. 387-409.
Cai, M., J. Si, X. Li, Z. Zeng, and M. Li. 2016. Characterization of the nuclear import mechanisms of HSV-1 UL31. Biological chemistry. 397:555-561.
Chang, Y.E., and B. Roizman. 1993. The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. Journal of virology. 67:6348-6356.
Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Molecular and cellular biology. 7:2745-2752.
Chen, Y.L., Y.J. Chen, W.H. Tsai, Y.C. Ko, J.Y. Chen, and S.F. Lin. 2009. The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell cycle (Georgetown, Tex.). 8:58-65.
Cingolani, G., J. Bednenko, M.T. Gillespie, and L. Gerace. 2002. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Molecular cell. 10:1345-1353.
Cohen, J.I. 2011. Epstein-Barr Virus Infections, Including Infectious Mononucleosis. Harrison's Principles of Internal Medicine, 18 edition. Chapter 181. Epstein-Barr Virus Infections, Including Infectious Mononucleosis.
Cook, A., E. Fernandez, D. Lindner, J. Ebert, G. Schlenstedt, and E. Conti. 2005. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Molecular cell. 18:355-367.
Cros, J.F., A. Garcia-Sastre, and P. Palese. 2005. An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic. 6:205-213.
D'Angelo, M.A., and M.W. Hetzer. 2008. Structure, dynamics and function of nuclear pore complexes. Trends in cell biology. 18:456-466.
Datsenko, K.A., and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 97:6640-6645.
Desai, P.J., E.N. Pryce, B.W. Henson, E.M. Luitweiler, and J. Cothran. 2012. Reconstitution of the Kaposi's Sarcoma-Associated Herpesvirus Nuclear Egress Complex and Formation of Nuclear Membrane Vesicles by Coexpression of ORF67 and ORF69 Gene Products. Journal of virology. 86:594-598.
Ernberg, I., J. Andersson, and A. Linde. 1990. [Epstein-Barr virus infection--clinical aspects and diagnosis]. Nordisk medicin. 105:19-23.
Farina, A., R. Feederle, S. Raffa, R. Gonnella, R. Santarelli, L. Frati, A. Angeloni, M.R. Torrisi, A. Faggioni, and H.J. Delecluse. 2005. BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress. Journal of virology. 79:3703-3712.
Fontes, M.R., T. Teh, D. Jans, R.I. Brinkworth, and B. Kobe. 2003. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. The Journal of biological chemistry. 278:27981-27987.
Fornerod, M., M. Ohno, M. Yoshida, and I.W. Mattaj. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 90:1051-1060.
Fuchs, W., B.G. Klupp, H. Granzow, N. Osterrieder, and T.C. Mettenleiter. 2002. The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. Journal of virology. 76:364-378.
Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and E. Nishida. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 390:308-311.
Funk, C., M. Ott, V. Raschbichler, C.H. Nagel, A. Binz, B. Sodeik, R. Bauerfeind, and S.M. Bailer. 2015. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain. PLoS Pathog. 11:e1004957.
Gorlich, D., S. Kostka, R. Kraft, C. Dingwall, R.A. Laskey, E. Hartmann, and S. Prehn. 1995. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Current biology : CB. 5:383-392.
Granato, M., R. Feederle, A. Farina, R. Gonnella, R. Santarelli, B. Hub, A. Faggioni, and H.J. Delecluse. 2008. Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles. Journal of virology. 82:4042-4051.
Gruenbaum, Y., and R. Foisner. 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annual review of biochemistry. 84:131-164.
Hellberg, T., L. Passvogel, K.S. Schulz, B.G. Klupp, and T.C. Mettenleiter. 2016. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res. 94:81-140.
Jang, Y.H., and D.S. Min. 2012. The hydrophobic amino acids involved in the interdomain association of phospholipase D1 regulate the shuttling of phospholipase D1 from vesicular organelles into the nucleus. Experimental & Molecular Medicine. 44:571-577.
Johnson, D.C., and J.D. Baines. 2011. Herpesviruses remodel host membranes for virus egress. Nature reviews. Microbiology. 9:382-394.
Johnson, H.M., P.S. Subramaniam, S. Olsnes, and D.A. Jans. 2004. Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays : news and reviews in molecular, cellular and developmental biology. 26:993-1004.
Kalderon, D., W.D. Richardson, A.F. Markham, and A.E. Smith. 1984. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 311:33-38.
Kosugi, S., M. Hasebe, N. Matsumura, H. Takashima, E. Miyamoto-Sato, M. Tomita, and H. Yanagawa. 2009. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. The Journal of biological chemistry. 284:478-485.
Kudo, N., S. Khochbin, K. Nishi, K. Kitano, M. Yanagida, M. Yoshida, and S. Horinouchi. 1997. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. The Journal of biological chemistry. 272:29742-29751.
la Cour, T., L. Kiemer, A. Molgaard, R. Gupta, K. Skriver, and S. Brunak. 2004. Analysis and prediction of leucine-rich nuclear export signals. Protein engineering, design & selection : PEDS. 17:527-536.
Lange, A., L.M. McLane, R.E. Mills, S.E. Devine, and A.H. Corbett. 2010. Expanding the Definition of the Classical Bipartite Nuclear Localization Signal. Traffic (Copenhagen, Denmark). 11:311-323.
Lange, A., R.E. Mills, C.J. Lange, M. Stewart, S.E. Devine, and A.H. Corbett. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. The Journal of biological chemistry. 282:5101-5105.
Lee, C.-P., P.-T. Liu, H.-N. Kung, M.-T. Su, H.-H. Chua, Y.-H. Chang, C.-W. Chang, C.-H. Tsai, F.-T. Liu, and M.-R. Chen. 2012. The ESCRT Machinery Is Recruited by the Viral BFRF1 Protein to the Nucleus-Associated Membrane for the Maturation of Epstein-Barr Virus. PLOS Pathogens. 8:e1002904.
Lee, C.P., Y.H. Huang, S.F. Lin, Y. Chang, Y.H. Chang, K. Takada, and M.R. Chen. 2008. Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. Journal of virology. 82:11913-11926.
Lee, S.J., Y. Matsuura, S.M. Liu, and M. Stewart. 2005. Structural basis for nuclear import complex dissociation by RanGTP. Nature. 435:693-696.
Leigh, K.E., M. Sharma, M.S. Mansueto, A. Boeszoermenyi, D.J. Filman, J.M. Hogle, G. Wagner, D.M. Coen, and H. Arthanari. 2015. Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication. Proceedings of the National Academy of Sciences of the United States of America. 112:9010-9015.
Li, M., S. Jiang, C. Mo, Z. Zeng, X. Li, C. Chen, Y. Yang, J. Wang, J. Huang, D. Chen, T. Peng, and M. Cai. 2015a. Identification of molecular determinants for the nuclear import of pseudorabies virus UL31. Archives of biochemistry and biophysics. 587:12-17.
Li, M., S. Jiang, J. Wang, C. Mo, Z. Zeng, Y. Yang, C. Chen, X. Li, W. Cui, J. Huang, T. Peng, and M. Cai. 2015b. Characterization of the nuclear import and export signals of pseudorabies virus UL31. Archives of virology. 160:2591-2594.
Lott, K., and G. Cingolani. 2011. The Importin β Binding Domain as a Master Regulator of Nucleocytoplasmic Transport. Biochimica et biophysica acta. 1813:1578-1592.
Luitweiler, E.M., B.W. Henson, E.N. Pryce, V. Patel, G. Coombs, J.M. McCaffery, and P.J. Desai. 2013. Interactions of the Kaposi's Sarcoma-associated herpesvirus nuclear egress complex: ORF69 is a potent factor for remodeling cellular membranes. Journal of virology. 87:3915-3929.
Lye, M.F., M. Sharma, K. El Omari, D.J. Filman, J.P. Schuermann, J.M. Hogle, and D.M. Coen. 2015. Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex. The EMBO journal. 34:2937-2952.
Mekhail, K., and D. Moazed. 2010. The nuclear envelope in genome organization, expression and stability. Nature reviews. Molecular cell biology. 11:317-328.
Mettenleiter, T.C. 2002. Herpesvirus Assembly and Egress. Journal of virology. 76:1537-1547.
Mettenleiter, T.C., F. Muller, H. Granzow, and B.G. Klupp. 2013. The way out: what we know and do not know about herpesvirus nuclear egress. Cellular microbiology. 15:170-178.
Milbradt, J., S. Auerochs, M. Sevvana, Y.A. Muller, H. Sticht, and M. Marschall. 2012a. Specific Residues of a Conserved Domain in the N Terminus of the Human Cytomegalovirus pUL50 Protein Determine Its Intranuclear Interaction with pUL53. The Journal of biological chemistry. 287:24004-24016.
Milbradt, J., S. Auerochs, M. Sevvana, Y.A. Muller, H. Sticht, and M. Marschall. 2012b. Specific residues of a conserved domain in the N terminus of the human cytomegalovirus pUL50 protein determine its intranuclear interaction with pUL53. J Biol Chem. 287:24004-24016.
Nakada, R., H. Hirano, and Y. Matsuura. 2015. Structure of importin-alpha bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Scientific reports. 5:15055.
Neumann, G., M.R. Castrucci, and Y. Kawaoka. 1997. Nuclear import and export of influenza virus nucleoprotein. Journal of virology. 71:9690-9700.
Paschal, L.F.P.a.B.M. 2005. Mechanisms of Receptor-Mediated Nuclear Import
and Nuclear Export. Traffic. 5:187–198.
Passvogel, L., B.G. Klupp, H. Granzow, W. Fuchs, and T.C. Mettenleiter. 2015. Functional characterization of nuclear trafficking signals in pseudorabies virus pUL31. Journal of virology. 89:2002-2012.
Passvogel, L., P. Trube, F. Schuster, B.G. Klupp, and T.C. Mettenleiter. 2013. Mapping of sequences in Pseudorabies virus pUL34 that are required for formation and function of the nuclear egress complex. Journal of virology. 87:4475-4485.
Reynolds, A.E., B.J. Ryckman, J.D. Baines, Y. Zhou, L. Liang, and R.J. Roller. 2001. U(L)31 and U(L)34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids. Journal of virology. 75:8803-8817.
Reynolds, A.E., E.G. Wills, R.J. Roller, B.J. Ryckman, and J.D. Baines. 2002. Ultrastructural Localization of the Herpes Simplex Virus Type 1 U(L)31, U(L)34, and U(S)3 Proteins Suggests Specific Roles in Primary Envelopment and Egress of Nucleocapsids. Journal of virology. 76:8939-8952.
Richard M. Longnecker, E.K., Jeffrey I. Cohen. 2013. Epstein-barr virus. Fields Virology: Sixth Edition. 1:1898-1954.
Rickinson, A.B., Kieff, E. 2001. Fields Virology. RJ., W. 1996. Chapter 68 Herpesviruses. Medical Microbiology. 4th edition.
Robbins, J., S.M. Dilworth, R.A. Laskey, and C. Dingwall. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 64:615-623.
Roizman, G.-J.Y.a.B. 2000. The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein.
Roller, R.J., Y. Zhou, R. Schnetzer, J. Ferguson, and D. DeSalvo. 2000. Herpes Simplex Virus Type 1 U(L)34 Gene Product Is Required for Viral Envelopment. Journal of virology. 74:117-129.
Ryckman, B.J., and R.J. Roller. 2004. Herpes Simplex Virus Type 1 Primary Envelopment: UL34 Protein Modification and the US3-UL34 Catalytic Relationship. Journal of virology. 78:399-412.
Schmeiser, C., E. Borst, H. Sticht, M. Marschall, and J. Milbradt. 2013. The cytomegalovirus egress proteins pUL50 and pUL53 are translocated to the nuclear envelope through two distinct modes of nuclear import. The Journal of general virology. 94:2056-2069.
Schnee, M., Z. Ruzsics, A. Bubeck, and U.H. Koszinowski. 2006. Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. Journal of virology. 80:11658-11666.
Shaiken, T.E., and A.R. Opekun. 2014. Dissecting the cell to nucleus, perinucleus and cytosol. Scientific reports. 4:4923.
Sharma, M., J.P. Kamil, and D.M. Coen. 2016. Preparation of the Human Cytomegalovirus Nuclear Egress Complex and Associated Proteins. Methods in enzymology. 569:517-526.
Su, Y.-C. 2014. Characterization of the nuclear localization mechanism and the interacting proteins of Epstein-Barr virus ssDNA-binding protein BALF2. Master Thesis of Graduate Institute of Microbiology College of Medicine, National Taiwan University
Tran, E.J., Wente, S. R. 2006. Dynamic nuclear pore complexes: life on the edge. Cell. 125:1041-1053.
Valencia, S.M., and L.M. Hutt-Fletcher. 2012a. Important but differential roles for actin in trafficking of Epstein-Barr virus in B cells and epithelial cells. Journal of virology. 86:2-10.
Valencia, S.M., and L.M. Hutt-Fletcher. 2012b. Important but Differential Roles for Actin in Trafficking of Epstein-Barr Virus in B Cells and Epithelial Cells. Journal of Virology. 86:2-10.
Walzer, S.A., C. Egerer-Sieber, H. Sticht, M. Sevvana, K. Hohl, J. Milbradt, Y.A. Muller, and M. Marschall. 2015. Crystal Structure of the Human Cytomegalovirus pUL50-pUL53 Core Nuclear Egress Complex Provides Insight into a Unique Assembly Scaffold for Virus-Host Protein Interactions. The Journal of biological chemistry. 290:27452-27458.
Weller, S.K., and D.M. Coen. 2012. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol. 4:a013011.
Wente, S.R., and M.P. Rout. 2010. The Nuclear Pore Complex and Nuclear Transport. Cold Spring Harbor Perspectives in Biology. 2:a000562.
Young, L.S., L.F. Yap, and P.G. Murray. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 16:789-802.
Yu-Zhen, S. 2013. The Study of the Nuclear Egress Complex in Epstein-Barr Virus Master’s thesis, National Taiwan University, Graduate Institute of Microbiology
College of Medicine, ROC.
Zeev-Ben-Mordehai, T., M. Weberruß, M. Lorenz, J. Cheleski, T. Hellberg, C. Whittle, K. El Omari, D. Vasishtan, Kyle C. Dent, K. Harlos, K. Franzke, C. Hagen, Barbara G. Klupp, W. Antonin, Thomas C. Mettenleiter, and K. Grünewald. 2015. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling. Cell Reports. 13:2645-2652.
Zeitler, B., Weis, Karsten. 2004. The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. The Journal of Cell Biology. 167:583-590.
Zhu, H.Y., H. Yamada, Y.M. Jiang, M. Yamada, and Y. Nishiyama. 1999. Intracellular localization of the UL31 protein of herpes simplex virus type 2. Archives of virology. 144:1923-1935.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67917-
dc.description.abstract屬於γ-皰疹病毒科 (γ-herpesviridae) 的EB病毒 (Epstein-Barr virus) 在細胞核內完成病毒DNA的複製後,其複製完成的DNA會被包裹形成核殼體(nucelocapsid),當核殼體完成組裝後,會透過出核複合體幫助病毒核殼體離開細胞核進到細胞質,以便進行最後階段的外套膜組裝。EB病毒的出核複合體由BFLF2及BFRF1所組成,分別是單純皰疹病毒 (Herpes simplex virus-1) 的UL31, UL34同源物。目前已知BFLF2單獨表現時會位在細胞質,但當其與BFRF1共同表現時,BFLF2則與BFRF1共位在核膜及細胞質,並且有泡狀產生。因此我們要探討BFLF2及BFRF1之間如何互相調節來幫助病毒核殼體出核,本篇研究著重於探討BFLF2不同的功能區段 (functional domain) 對於病毒複製的影響。先前研究顯示BFLF2胺基酸序列2-102對其進核 (nuclear localization) 及與BFRF1交互作用有重要影響,而本篇研究針對此段胺基酸進行分段序列刪除。我們發現BFLF2胺基酸序列81-107為其與BFRF1的交互作用序列,並且發現BFLF2的進核序列 (nuclear localization signal) 是由三個重要的胺基酸 (47 Arginine, 50 Lysine, 52 Arginine) 及一段較為分散、帶有正電的胺基酸序列所組成,並且藉由輸入蛋白β (importin β) 幫助進核。另外,在帶有EB病毒基因組並剔除BFLF2的細胞 (293TetER/p2089ΔBFLF2) ,發現病毒的分泌程度會因為缺少BFLF2而下降,一旦回補BFLF2便會回復病毒分泌程度。也發現當缺少BFLF2進核序列以及與BFRF1的交互作用序列,病毒的分泌也會受到減縮。綜合結果而論,本篇研究發現了BFLF2的進核序列及其與BFRF1交互作用之序列,而這兩段序列對於病毒分泌有重要的影響。zh_TW
dc.description.abstractEpstein-Barr virus is a human gamma herpes virus, which replicates its genomic DNA in the nucleus. Replicated viral DNA is packaged into procapsids as nucleocapsids before the transport from the nucleus into the cytoplasm for subsequent maturation. This nuclear egress process is facilitated by the function of viral nuclear egress complex (NEC) which consisted of BFLF2 and BFRF1, the homologs of UL31 and UL34 in HSV-1, respectively. It was known that BFLF2 localized in the nucleus when expressed alone. However, the distribution of BFLF2 changes to both nuclear rim and cytoplasm with vesicle formation once it was co-expressed with BFRF1. We were intrigued by the different functional domains of BFLF2 in EBV replication. Our previous study indicated that BFLF2 a.a. 2-102 was required for the nuclear targeting and the interaction with BFRF1. To know exact functional motifs of BFLF2 within a.a. 2-102, systemic deletion mutants of BFLF2 were generated. We found that a.a. 81-107 of BFLF2 was responsible for the interaction with BFRF1. In addition, non-canonical nuclear localization signal (NLS) of BFLF2, which consisted of three crucial amino acids (47R, 50K, 52R) and several separated arginines were identified. Although the nuclear localization of BFLF2 is still importin β-dependent, BFLF2 NLS is different from other conserved NLSs of α- and β-herpesviruses. Furthermore, virion secretion was diminished in BFLF2 knock out 293TetER/p2089 EBV bacmid cells, but it was rescued after BFLF2 trans-complementation. In addition, the absence of identified NLS or BFRF1-interacting domain of BFLF2 leads to a decrease on virion secretion. Altogether, these results revealed the nuclear targeting and BFRF1-interacting domains of BFLF2, which are important for virion secretion.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:57:58Z (GMT). No. of bitstreams: 1
ntu-106-R04445113-1.pdf: 4053685 bytes, checksum: fec61aa28fdae2d8c56ef0fee6c9f28f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
Chapter 1: Introduction 1
1.1. Epstein-Barr Virus 1
1.1.1. Classification, Characterization and Associated diseases 1
1.1.2. Life Cycle 2
1.2. Nucleocytoplasmic Transport 2
1.2.1. Nuclear Envelope 2
1.2.2. Nuclear Pore Complex 3
1.2.3. Nuclear localization signal (NLS) 3
1.3. Nuclear Egress of Herpesvirus 5
1.3.1. Nuclear Egress Complex of Herpesviruses 5
1.3.2. Crystal Structure of Nuclear Egress Complex 6
1.3.3. Primary and Secondary Envelopment 6
1.3.4. The differences of Nuclear Egress between EBV NEC and α-Herpesviruses 7
1.4. BFLF2 and its homolog proteins 8
1.4.1. BFLF2 and its homologous proteins in Herpesviruses 8
1.4.2. The Nuclear Localization Signals of BFLF2 homologous proteins 8
1.5. The interaction of BFLF2 and BFRF1 9
1.6. Specific Aims 9
Chapter 2: Materials & Methods 10
2.1. Cell culture 10
2.2. Transfection 10
2.3. Plasmids construction 10
2.4. Immunofluorescence assay 11
2.5 Sodium dodecyle sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis 12
2.6 Co-Immunoprecipitation assay 12
2.7 Construction of BFLF2 knockout EBV bacmid, and selection of doxycycline inducible cells containing EBV bacmid 13
2.8 Extraction of intracellular EBV DNA 14
2.9. Isolation of secreted EBV particles and DNA extraction 14
2.10. Quantitative real-time PCR (qPCR) analysis 15
2.11. Importin β inhibitor treatment 15
2.12. Time-lapse Microscopy 16
2.13. Subcellular fractionation 16
Chapter 3: Results 19
3.1. The prediction of BFLF2 putative nuclear targeting and BFRF1-interacting domains are in its N-terminus according to the alignment with BFLF2 homologs 19
3.2. The nuclear localization signal and BFRF1-interacitng domain of BFLF2 locates in the a.a 2-102 20
3.2.1. Amino acids 28-58 of BFLF2 are important for its nuclear localization 20
3.2.2 The region of a.a 81-107 in BFLF2 is required to co-localize and interact with GFP-BFRF1 21
3.2.3. Three amino acids, 47 Arginine, 50 Lysine, and 52 Arginine, are crucial for the nuclear localization of BFLF2 21
3.2.4. The three amino acids, 47R, 50K, 52R, and a.a 58-81 of BFLF2 coordinately regulate the nuclear targeting of BFLF2 22
3.3. Nuclear translocation of BFLF2 depends on importin β 23
3.4. The dynamic subcellular localization of CFP-BFLF2 with DsRed-BFRF1 in HeLa cells 23
3.5. The dynamic subcellular localization of GFP-BFLF2 or GFP-F2d4 (Δ81-107) with DsRed-BFRF1 in HeLa cells 24
3.6. The complementation of Flag-BFLF2 in 293TetER/p2089ΔBFLF2 bacmid cells 26
3.7. The levels of virion secretion were decreased after complementation of F2d4 or F2(3A,d3) mutant 27
Chapter 4 : Discussion 28
4.1. Amino acids 28-81 and 81-107 contribute to the nuclear targeting and BFRF1-interacting domains, respectively 28
4.2. The non-classical NLS in BFLF2 is different from other homologs 29
4.3. A probable nuclear export signal of BFLF2 may locate at CR4 and regulate the translocation of NEC 31
4.4. A distinct cytoplasmic localization of BFLF2 identified by subcellular fraction 33
Chapter 5 : Figures 35
Figure 1. Functional domain mapping for nuclear targeting and BFRF1-interacting domains of BFLF2 35
Figure 2. The protein sequence alignment of BFLF2 with herpesviral homologs 36
Figure 3. 3D structural prediction of EBV nuclear egress complex according to herpesviral homologs 38
Figure 4. The nuclear localization was defective in the absence of a.a 2-102 in BFLF2 39
Figure 5. F2d2 (Δ28-58 a.a) of BFLF2 was distributed in both cytoplasm and nucleus in HeLa cells 40
Figure 6. F2d4 (Δ81-107 a.a) was defective to localize and interact with BFRF1 41
Figure 7. Three amino acids (R47, K50, R52) were crucial for the nuclear localization of Flag-BFLF2 43
Figure 8. Flag-BFLF2 NLS mutant F2(3A,d3) was defective to localize in nucleus, but it could still co-localize and interact with BFRF1 44
Figure 9. Nuclear translocation of BFLF2 is sensitive to importazole treatment 46
Figure 10. The dynamic subcellular distribution of CFP-BFLF2 and DsRed-BFRF1 47
Figure 11. The dynamic subcellular distribution of GFP-BFLF2 and DsRed-BFRF1 48
Figure 12. The dynamic subcellular distribution of GFP-F2d4 (Δ81-107 a.a ) and DsRed-BFRF1 50
Figure 13. Construction and characterization of BFLF2 knockout EBV bacmid cells 52
Figure 14. The virion secretion was defected in 293TetER/p2089ΔBFLF2 cells after doxycycline induction 53
Figure 15. The complementation with F2(3A,d3) or F2d4 mutants in 293TetER/p2089ΔBFLF2 cells reduced the virion secretion 54
Chapter 6 : Supplemental Data and Tables 55
Supplemental data 1. The region of a.a 2-102 of BFLF2 was required for the co-localization and interaction with BFRF1 55
Supplemental data 2. The distribution of GFP-BFLF2, GFP-F2d4, and F2(3A,d3) in HeLa cells 56
Supplemental data 3. The nuclear fractionation of Flag-BFLF2 in HeLa cells 57
Supplemental data 4. The second repeated complementation of Flag-BFLF2 wild type, F2d4, and F2(3A,d3) in 293TetER/p2089ΔBFLF2 bacmid cells 58
Supplemental data 5. The third repeated complementation of Flag-BFLF2 wild type, F2d4, and F2(3A,d3) in 293TetER/p2089ΔBFLF2 bacmid cells 59
Table 1. Plasmids 60
Table 2. Primers 61
References 62
dc.language.isoen
dc.titleBFLF2蛋白之進核及與BFRF1交互作用序列對於EB病毒顆粒釋出之影響zh_TW
dc.titleThe nuclear targeting and BFRF1-interacting domains of BFLF2 are required for Epstein-Barr Virus secretionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗冠,劉雅雯,李重霈
dc.subject.keywordEB病毒,出核,zh_TW
dc.subject.keywordEBV,nuclear egress,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201701734
dc.rights.note有償授權
dc.date.accepted2017-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved