Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6790
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱(Jung-Kai Chen)
dc.contributor.authorYu-Jen Linen
dc.contributor.author林育任zh_TW
dc.date.accessioned2021-05-17T09:18:11Z-
dc.date.available2015-07-27
dc.date.available2021-05-17T09:18:11Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-18
dc.identifier.citation[1] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg, 1989.
[2] F. R. Gantmacher, The Theory of Matrices, Vol. I and II, Chelsea, New York, 1959.
[3] M. Kuijper, First-Order Representations of Linear Systems. Birkhäuser, Boston, 1994.
[4] F. L. Lewis, A Survey of Linear Singular Systems, Circuits Systems Signal Process., 5 (1986), 3--36.
[5] F. L. Lewis, A Tutorial on the Geometric Analysis of Linear Time-invariant Implicit Systems, Automatica, 28 (1992), 119--137.
[6] D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, 45 (1977), 991--995.
[7] D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Trans. Automat. Control, 22 (1977), 312--321.
[8]R. W. Newcomb and B. Dziurla, Some Circuits and Systems Applications of Semistate Theory, Circuits Systems Signal Process., 8 (1989), 235--260.
[9]G. Verghese, B. C. Levy, and T. Kailath, A Generalized State-Space for Singular Systems, IEEE Trans. Automat. Control, 26 (1981), 811--831.
[10]E. L. Yip, and R. F. Sincovec, Solvability, Controllability and Observability of Continuous Descriptor Systems, IEEE Trans. Automat. Control, 26 (1981), 702--706.
[11] C. F. Yung, Geometry of Matrix Pencils with Applications to Linear Discrete-Time
Descriptor Systems, Master Thesis, Department of Mathematics, National Taiwan University, 2010.
[12] S.L. Campbell and C.D. Mayer, Jr, Generalized Inverses ofLinear Transformations,
Pitman, Great Britain, 1979.
[13] S.L. Campbell, Singular systems of differential equations II, Pitman Advanced Publishing Program, Great Britain, 1982.
[14] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications,
Wiley, New York, 1974.
[15] T.L. Boullion and P.L. Odell, Generalized Inverse Matrices, Wiley-Interscience, New York, 1971.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6790-
dc.description.abstract這篇論文最主要是在探討關於線性差分方程的可解性。主要是以幾何的觀點去探討關於(E, A, B)-系統的解的性質。我們先以較簡單的(E, A)-系統入手,並且嘗試著利用幾何的觀點去探討出其解的性質。並且希望可以將求解的方式,以與所選取基底無關的方法來獲得相關結論。
而(E, A)-系統為(E, A, B)-系統的特例。因此之後可利用之前的結論,再進一步地研究關於(E, A, B)-系統解的特性。而在最後,也得以完整的描述解空間。
zh_TW
dc.description.abstractIn this thesis, we focus on the solvability of singular linear difference equations. We use the geometric viewpoint to survey the properties about the solutions of (E, A, B)-system. First, we consider the simple system—(E, A)-system. We try to use the geometric technique to solve the properties about the solutions of (E, A)-system. And we hope that we can solve it by the way which is independent of the choice of the basis.
And (E, A)-system is a special case of the (E, A, B)-system. So, we can use the conclusions which we got before to solve the solution of the (E, A, B)-system. Finally, we have described the solution space of (E, A, B)-system.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:11Z (GMT). No. of bitstreams: 1
ntu-101-R99221009-1.pdf: 507026 bytes, checksum: 4a7888af1184b6be2c899cc4075462a2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………… i
誌謝……………………………………………………………. ii
中文摘要…………………………………………………………. iii
英文摘要…………………………………………………………. iv
Chapter 1 Introduction………………….………………….. 1
Chapter 2 Preliminaries……………………………………….2
Chapter 3 Solvability of (E, A)……………………….. 6
Chapter 4 Complete Sequences of (E, A)…………………11
Chapter 5 Solvability of (E, A, B)………………………18
Chapter 6 Conclusion………….……………….. …………27
參考文獻…………………………………….………………..….28
dc.language.isoen
dc.title線性差分方程的可解性zh_TW
dc.titleSolvability of Singular Linear Difference Equationsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor容志輝(Chee-Fai Yung)
dc.contributor.oralexamcommittee江謝宏任,蔡炎龍
dc.subject.keyword可解性,線性差分方程,( E, A)-系統,( E, A, B)-系統,幾何控制,zh_TW
dc.subject.keywordsolvability,singular linear difference equations,( E, A)-system,( E, A, B)-system,geometric control,en
dc.relation.page29
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf495.14 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved