請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67906完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | |
| dc.contributor.author | Chun-Che Chang | en |
| dc.contributor.author | 張君澤 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:57:17Z | - |
| dc.date.available | 2022-07-24 | |
| dc.date.copyright | 2017-07-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-20 | |
| dc.identifier.citation | 1 Ahn, C.: ‘Advances in wound photography and assessment methods’, Advances in skin & wound care, 2008, 21, (2), pp. 85-93.
2 Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., and Longaker, M.T.: ‘Human skin wounds: a major and snowballing threat to public health and the economy’, Wound Repair and Regeneration, 2009, 17, (6), pp. 763-771. 3 Budman, J., Keenahan, K., Acharya, S., and Brat, G.A.: ‘Design of A Smartphone Application for Automated Wound Measurements for Home Care’, Iproceedings, 2015, 1, (1), pp. e16. 4 Song, B., and Sacan, A.: ‘Automated wound identification system based on image segmentation and artificial neural networks’, in Editor (Ed.)^(Eds.): ‘Book Automated wound identification system based on image segmentation and artificial neural networks’ (IEEE, 2012, edn.), pp. 1-4. 5 Shih, H.-F., Ho, T.-W., Hsu, J.-T., Chang, C.-C., Lai, F., and Wu, J.-M.: ‘Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm’, in Editor (Ed.)^(Eds.): ‘Book Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm’ (International Society for Optics and Photonics, 2017, edn.), pp. 1022517-1022517-1022515. 6 Loizou, C.P., Kasparis, T., Mitsi, O., and Polyviou, M.: ‘Evaluation of wound healing process based on texture analysis’, in Editor (Ed.)^(Eds.): ‘Book Evaluation of wound healing process based on texture analysis’ (IEEE, 2012, edn.), pp. 709-714. 7 Hsu, J.-T., Ho, T.-W., Shih, H.-F., Chang, C.-C., Lai, F., and Wu, J.-M.: ‘Automatic wound infection interpretation for postoperative wound image’, in Editor (Ed.)^(Eds.): ‘Book Automatic wound infection interpretation for postoperative wound image’ (International Society for Optics and Photonics, 2017, edn.), pp. 1022526-1022526-1022526. 8 Jose, A., Haak, D., Jonas, S.M., Brandenburg, V., and Deserno, T.M.: ‘Towards Standardized Wound Imaging’: ‘Bildverarbeitung für die Medizin 2015’ (Springer, 2015), pp. 269-274. 9 Park, M., Brocklehurst, K., Collins, R.T., and Liu, Y.: ‘Deformed lattice detection in real-world images using mean-shift belief propagation’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, (10), pp. 1804-1816. 10 Geman, S., and Graffigne, C.: ‘Markov random field image models and their applications to computer vision’, in Editor (Ed.)^(Eds.): ‘Book Markov random field image models and their applications to computer vision’ (1986, edn.), pp. 2. 11 Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, International journal of computer vision, 2004, 60, (2), pp. 91-110. 12 Bay, H., Tuytelaars, T., and Van Gool, L.: ‘Surf: Speeded up robust features’, Computer vision–ECCV 2006, 2006, pp. 404-417. 13 Bradski, G.: ‘The opencv library’, Doctor Dobbs Journal, 2000, 25, (11), pp. 120-126. 14 Bautista, P.A., Hashimoto, N., and Yagi, Y.: ‘Color standardization in whole slide imaging using a color calibration slide’, Journal of pathology informatics, 2014, 5, (1), pp. 4. 15 Deserno, T.M., Sárándi, I., Jose, A., Haak, D., Jonas, S., Specht, P., and Brandenburg, V.: ‘Towards quantitative assessment of calciphylaxis’, in Editor (Ed.)^(Eds.): ‘Book Towards quantitative assessment of calciphylaxis’ (International Society for Optics and Photonics, 2014, edn.), pp. 90353C-90353C-90358. 16 Albiol, A., Torres, L., and Delp, E.J.: ‘Optimum color spaces for skin detection’, in Editor (Ed.)^(Eds.): ‘Book Optimum color spaces for skin detection’ (IEEE, 2001, edn.), pp. 122-124. 17 Kakumanu, P., Makrogiannis, S., and Bourbakis, N.: ‘A survey of skin-color modeling and detection methods’, Pattern recognition, 2007, 40, (3), pp. 1106-1122. 18 Chang, C., Ho, T.-W., Wu, J.-M., Tsai, H.-H., Chen, C.C.-P., Lai, F., Tai, H.-C., and Cheng, N.-C.: ‘Robust dermatological wound image segmentation in clinical photos’, in Editor (Ed.)^(Eds.): ‘Book Robust dermatological wound image segmentation in clinical photos’ (IEEE, 2015, edn.), pp. 1-4. 19 Monteiro, F., and Campilho, A.: ‘Performance evaluation of image segmentation’, Image Analysis and Recognition, 2006, pp. 248-259. 20 Hanley, J.A., and McNeil, B.J.: ‘The meaning and use of the area under a receiver operating characteristic (ROC) curve’, Radiology, 1982, 143, (1), pp. 29-36. 21 Sid-Ahmed, M., and Boraie, M.T.: ‘Dual camera calibration for 3-D machine vision metrology’, IEEE Transactions on instrumentation and measurement, 1990, 39, (3), pp. 512-516. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67906 | - |
| dc.description.abstract | 一般傷口如果在 6 至 8 週內沒有癒合現象則稱為慢性傷口。慢性傷口的患者, 相對來說不良於行,回診較麻煩。美國每年平均有六百五十萬人死因為傷口感染 及病發症。在未來的高齡化社會,亟需慢性傷口管理,作為長期照護發展的關鍵 技術。
然而每次拍攝照片時傷口的位置都會有所不同,假如因為拍攝的遠近或角度 而造成傷口的大小失真,將不利於慢性傷口的癒合情形追蹤。因此本論文計畫開 發一個演算法,使得術後的傷口照片可以依據正規色彩卡校正其傷口照片的相對 色彩以及大小,並承接台大醫院-術後傷口影像分析計畫,使得傷口的大小、紅、 腫、發炎等情形能夠判斷得更加精準。 本篇論文著重於傷口影像的校正演算法,以尺度不變的特徵轉換追蹤正規 色彩,並以色彩卡為輔助進行大小調整與色彩正規化。在結果的方面使用了邊界 範圍傷口涵蓋率作為評估方式,校正過的傷口影像擁有 90.25%的傷口涵蓋率,未 校正的影像擁有 88.31%的傷口涵蓋率。除此之外,我們也提出了一個電腦輔助傷 口面積計算的模型,與手動計算的傷口面積相比有 12.42%的偏差。 | zh_TW |
| dc.description.abstract | Chronic wounds are incomplete healing wounds after 6 to 8 weeks. Compared to others, patients with chronic wounds are inconvenient in action and have troubles to return for their check-ups regularly. In USA, there are approximately 6.5 million of patient died of wound infections and complications [1]. In our future aging society, an organized long-term wound care technique is urgently needed.
However, the wound image taken by the camera alters due to different angles and different distances among the wounds, which is not conducive of wound tracking. Therefore, in this literature we proposed an image processing algorithm which can calibrate the size and normalize the color of the image according to a color reference card. In our work, we proposed an image calibration algorithm based on a color reference card. Our algorithm evaluates the wound coverage rate based on precision recall method. The calibrated image possesses a wound coverage rate of 90.25% while the original image possesses a coverage rate of 88.31%. Furthermore, we proposed a computer aided wound area measurement prototype with a bias of 12.42% comparing to the area calculated manually. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:57:17Z (GMT). No. of bitstreams: 1 ntu-106-R04945022-1.pdf: 4757880 bytes, checksum: 8d37cde77c30ef3ffaba79392e1b8e24 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES V Chapter 1 Introduction 1 1.1 Background 1 1.2 Image Calibration 3 1.3 Objective 5 Chapter 2 System Architecture 7 Chapter 3 Method 9 3.1 Image Acquisition 9 3.2 Color Normalization 14 3.3 Scale Calibration 17 3.4 Wound Detection 20 3.5 Wound Area Calculation 26 Chapter 4 Results 27 4.1 Evaluation Study 27 4.2 Case Study 31 Chapter 5 Discussion 34 Chapter 6 Conclusion and Future Work 36 Acknowledgement 38 REFERENCE 39 | |
| dc.language.iso | en | |
| dc.subject | 色彩正規化 | zh_TW |
| dc.subject | 慢性傷口 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 傷口面積計算 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | chronic wound | en |
| dc.subject | color normalization | en |
| dc.subject | image processing | en |
| dc.subject | computer aided diagnose | en |
| dc.subject | wound area measurement | en |
| dc.title | 自動化尺度校正與色彩正規化方法用於時序性傷口影像辨識 | zh_TW |
| dc.title | Automated Scale Calibration and Color Normalization for Recognition of Time Series Wound Images | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳中平 | |
| dc.contributor.oralexamcommittee | 陳俊良,吳經閔,汪大暉 | |
| dc.subject.keyword | 慢性傷口,色彩正規化,影像處理,電腦輔助診斷,傷口面積計算, | zh_TW |
| dc.subject.keyword | chronic wound,color normalization,image processing,computer aided diagnose,wound area measurement, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU201701804 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
