請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Kuo-Yuan Hung | en |
| dc.contributor.author | 洪國原 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:57:13Z | - |
| dc.date.available | 2025-08-14 | |
| dc.date.copyright | 2020-09-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | [1] K. S. Novoselov et al., 'Electric field effect in atomically thin carbon films,' science, vol. 306, no. 5696, pp. 666-669, 2004. [2] M. J. Allen, V. C. Tung, and R. B. Kaner, 'Honeycomb carbon: a review of graphene,' Chemical reviews, vol. 110, no. 1, pp. 132-145, 2010. [3] C. Soldano, A. Mahmood, and E. Dujardin, 'Production, properties and potential of graphene,' Carbon, vol. 48, no. 8, pp. 2127-2150, 2010. [4] S. Bae et al., 'Roll-to-roll production of 30-inch graphene films for transparent electrodes,' Nat Nanotechnol, vol. 5, no. 8, pp. 574-8, Aug 2010. [5] X. Zang et al., 'Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes,' Small, vol. 10, no. 13, pp. 2583-8, Jul 9 2014. [6] X. Li et al., 'Hybrid Heterojunction and Solid-State Photoelectrochemical Solar Cells,' Advanced Energy Materials, vol. 4, no. 14, 2014. [7] Y. Wang et al., 'Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring,' Advanced Functional Materials, vol. 24, no. 29, pp. 4666-4670, 2014. [8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, 'Single-layer MoS2 transistors,' Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011. [9] H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhou, and Z. Liu, 'Two-dimensional heterostructures: fabrication, characterization, and application,' Nanoscale, vol. 6, no. 21, pp. 12250-72, Nov 7 2014. [10] S. Wi et al., 'Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping,' ACS nano, vol. 8, no. 5, pp. 5270-5281, 2014. [11] X. Hu, L. Kou, and L. Sun, 'Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures,' Sci Rep, vol. 6, p. 31122, Aug 16 2016. [12] E. S. Penev, A. Kutana, and B. I. Yakobson, 'Can Two-Dimensional Boron Superconduct?,' Nano Lett, vol. 16, no. 4, pp. 2522-6, Apr 13 2016. [13] A. K. Geim and I. V. Grigorieva, 'Van der Waals heterostructures,' Nature, vol. 499, no. 7459, pp. 419-25, Jul 25 2013. [14] R. Ganatra and Q. Zhang, 'Few-layer MoS2: a promising layered semiconductor,' ACS nano, vol. 8, no. 5, pp. 4074-4099, 2014. [15] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, 'Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,' ACS nano, vol. 8, no. 2, pp. 1102-1120, 2014. [16] Y. Gong et al., 'Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide,' Nano Lett, vol. 14, no. 2, pp. 442-9, Feb 12 2014. [17] S. Susarla et al., 'Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap,' Adv Mater, vol. 29, no. 35, Sep 2017. [18] M. Silva-Feaver, 'Born Oppenheimer Approximation,' 2018. [19] D. Sholl and J. A. Steckel, Density functional theory: a practical introduction. John Wiley Sons, 2011. [20] P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas,' Physical Review, vol. 136, no. 3B, pp. B864-B871, 1964. [21] W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects,' Physical Review, vol. 140, no. 4A, pp. A1133-A1138, 1965. [22] W. Kohn and L. J. Sham, 'Quantum Density Oscillations in an Inhomogeneous Electron Gas,' Physical Review, vol. 137, no. 6A, pp. A1697-A1705, 1965. [23] J. P. Perdew, K. Burke, and M. Ernzerhof, 'Generalized gradient approximation made simple,' Physical review letters, vol. 77, no. 18, p. 3865, 1996. [24] F. Bloch, 'Über die quantenmechanik der elektronen in kristallgittern,' Zeitschrift für physik, vol. 52, no. 7-8, pp. 555-600, 1929. [25] H. Hellmann, 'A New Approximation Method in the Problem of Many Electrons,' The Journal of Chemical Physics, vol. 3, no. 1, pp. 61-61, 1935. [26] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, 'Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients,' Reviews of Modern Physics, vol. 64, no. 4, pp. 1045-1097, 1992. [27] P. E. Blochl, 'Projector augmented-wave method,' Phys Rev B Condens Matter, vol. 50, no. 24, pp. 17953-17979, Dec 15 1994. [28] R. P. Feynman, 'Forces in Molecules,' Physical Review, vol. 56, no. 4, pp. 340-343, 1939. [29] J. W. Gibbs, 'On the equilibrium of heterogeneous substances,' 1879. [30] H. Donald, 'The organization of behavior,' New York 1952DonaldThe Organization of Behaviour1952, 1949. [31] F. Rosenblatt, 'Principles of neurodynamics. perceptrons and the theory of brain mechanisms,' Cornell Aeronautical Lab Inc Buffalo NY, 1961. [32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 'Learning representations by back-propagating errors,' nature, vol. 323, no. 6088, pp. 533-536, 1986. [33] A. Khorshidi and A. A. Peterson, 'Amp: A modular approach to machine learning in atomistic simulations,' Computer Physics Communications, vol. 207, pp. 310-324, 2016. [34] G. Kresse and D. Joubert, 'From ultrasoft pseudopotentials to the projector augmented-wave method,' Physical review b, vol. 59, no. 3, p. 1758, 1999. [35] A. R. Denton and N. W. Ashcroft, 'Vegard’s law,' Physical Review A, vol. 43, no. 6, pp. 3161-3164, 1991. [36] J. Behler, 'Perspective: Machine learning potentials for atomistic simulations,' J Chem Phys, vol. 145, no. 17, p. 170901, Nov 7 2016. [37] J. Behler, 'Atom-centered symmetry functions for constructing high-dimensional neural network potentials,' J Chem Phys, vol. 134, no. 7, p. 074106, Feb 21 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67905 | - |
| dc.description.abstract | 二維過渡金屬二硫屬化合物 (2D Transition Metal Dichalcogenides, TMDs) 是一種結構類似於石墨烯 (Graphene) 的化合物,其結構特徵為在同平面上原子排序呈現六邊形蜂巢狀,且側面原子間排序呈現上下交錯排列。金屬(如二硫化鈮、二硫化鉭)或半導體(如二硫化鉬、二硒化鎢)等二維材料相繼問世後廣泛應用在光學、光電探測器上,因其熱穩定性高,可在室溫下穩定存在於大氣中,使得此類二維材料迅速成為熱門材料及研究的熱門課題。 欲進行多元金屬硫屬化合物二維材料之理論計算來探討不同濃度結構的混合能量以及基態能量,由於其化學環境複雜,難以找到準確的古典勢能場以進行分子動力學模擬;第一原理計算雖能精確計算原子間作用力,但需要耗費大量的計算資源及時間,且計算尺度被限縮在幾百個原子內。在本研究中,考慮到過渡金屬硫屬化合物不同原子的隨機排列,系統規模超過第一原理負荷。因此,本研究使用第一原理計算之小尺度系統當作訓練範本,結合神經網路與機器學習方式擬合出能夠準確描述大尺度系統並進行分子動力學的勢能模型。 訓練完成的神經網路勢能先以測試集驗證其系統能量與各別原子受力之準確度,顯示出神經網路勢能除了有與第一原理相當之準確度,且具有更高的計算效率,亦可應用於第一原理難以處理之大系統。神經網路勢能模型能夠迅速又準確的估算複雜的化學環境,進而進行大尺度的模擬以探索其材料性質。本研究以約兩千個原子的結構進行蒙地卡羅模擬,在不同種多元素組成的結構下計算不同濃度結構的混合能量以及基態能量,其複雜的化學結構很難從實驗中獲得,機器學習勢能模型展示出可以用來探索微觀結構下的複雜化學環境。 | zh_TW |
| dc.description.abstract | 2D Transition Metal Dichalcogenides (TMDs) is a compound material with a structure similar to graphene. The structures of TMDs feature the sequence of the coplanar atoms with a hexagonal honeycomb shape similar to graphene, and the sequence of staggered up and down side atoms. Recently, metallic dichalcogenides (NbS2, TaS2) or semiconducting dichalcogenides (MoS2, WSe2), have been widely used in the optical and photodetectors applications. Because of their high thermal stability, most TMD materials are stable under ambient conditions, making them become a popular topic in advanced materials. Recently mixed TMDs such as (MoxW1-x)(SySe1-y)2 are drawing an increasing attentions owing to highly tunable properties by changing composition x and y. The mixing energies of this mixed TMD material as the function of chemical compositions provide critical microstructural information of the material. Nevertheless, such information can only be extracted from theoretical calculations. The first principle calculations can evaluate the system energetics of such chemically complex materials with arbitrary compositions; however, the first principle calculations are computationally intensive, making exploration of the configurational space of mixed TMDs infeasible. In this thesis, we harnessed the power of machine learning by training an artificial neural network (ANN) potential model. The ANN model was trained by generating a training set comprised of atomistic images of (MoxW1-x)(SySe1-y)2 mixed TMDs of different compositions, labeled by energies computed from the first principle calculations. Once successfully trained, the ANN model can be utilized for large-scale atomistic simulation of mixed TMD materials of arbitrary size beyond the reach of the first principle calculations. We demonstrated that the trained ANN potential model can predict the energies of TMD material with high fidelity to the first principle calculations; furthermore, the ANN model also offers orders of magnitude computational speed up relative to the first principle calculations, thereby allowing us to perform exhaustive sampling over the configurational space of the mixed TMD materials. We performed Monte Carlo simulations of the (MoxW1-x)(SySe1-y)2 mixed TMD material of different compositions, with a system size of around two thousand atoms —- a size literally impossible for the first principle calculations. We computed respective mixing energies, demonstrating that the machine-learning-enabled energy model can be utilized to explore the microstructures of chemically complex materials that are difficult to be retrieved from experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:57:13Z (GMT). No. of bitstreams: 1 U0001-1408202016575900.pdf: 4290691 bytes, checksum: 64fc67fda398fecbec165180d353c804 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 摘要…………………………………………………………………………………….i Abstract ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 文獻回顧 4 第二章 理論介紹與計算方法 8 2.1 第一原理分子動力學 8 2.1.1 簡介 8 2.1.2 波恩-歐本海默近似(Born-Oppenheimer approximation) 8 2.1.3 密度泛函理論(Density Functional Theory, DFT) 10 2.1.4 交換相關能(Electron Exchange-Correlation Energy) 13 2.1.5 自洽方程式(Self-consistent) 14 2.1.6 布洛赫定理(Bloch Theorem) 15 2.1.7 贋勢(Pseudopotential Approximation) 16 2.1.8 平面波投影(Project Augmented Waves, PAW) 17 2.1.9 賀爾曼-費恩曼定理(Hellmann-Feynman theorem) 19 2.1.10 統計模型 19 2.2 類神經網路 22 2.2.1 類神經網路簡介 22 2.2.2 類神經元模型 24 2.2.3 活化函數(Activation function) 26 2.2.4 類神經網路基本架構與學習方式 27 2.2.5 倒傳遞類神經網路 29 2.2.6 運用類神經網路 36 第三章 模擬流程與模型建構 37 3.1 模擬流程 37 3.1.1 流程圖 39 3.2 二維材料結構建模 40 3.3 VASP設定 41 3.4 分子勢能場訓練 43 3.4.1 原子尺度機器學習(Atomistic Machine-learning Package ,AMP) 43 3.4.2 截斷半徑(Cutoff Radius) 44 3.4.3 訓練集(Training sets) 48 3.4.4 訓練過程 49 第四章 結果與討論 51 4.1 簡介 51 4.2 工作流程 52 4.3 指紋特徵評估 54 4.4 勢能模型 57 4.4.1 勢能訓練 57 4.4.2 勢能測試 59 4.5 蒙地卡羅模擬 60 4.6 混合能量(Mixing Energy) 65 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 68 參考文獻 69 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混合能量 | zh_TW |
| dc.subject | 蒙地卡羅模擬 | zh_TW |
| dc.subject | 過渡金屬二硫屬化合物 | zh_TW |
| dc.subject | 分子勢場 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 人工神經網路 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | Mixing energy | en |
| dc.subject | first principle calculations | en |
| dc.subject | Machine Learning | en |
| dc.subject | Artificial Neural Networks | en |
| dc.subject | Molecular potential | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | Two Dimensional materials | en |
| dc.title | 以機器學習方法訓練四元過渡金屬硫屬化合物二維材料之分子勢場 | zh_TW |
| dc.title | Modeling Microstructures of Quaternary 2D Transition Metal Dichalcogenides Using Artificial Neural Network Potential Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 包淳偉(Chun-Wei Pao) | |
| dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),朱錦洲(Chin-Chou Chu),陳瑞琳(Ruey-Lin Chern) | |
| dc.subject.keyword | 二維材料,過渡金屬二硫屬化合物,第一原理計算,密度泛函理論,機器學習,人工神經網路,分子勢場,蒙地卡羅模擬,混合能量, | zh_TW |
| dc.subject.keyword | Two Dimensional materials,first principle calculations,Machine Learning,Artificial Neural Networks,Molecular potential,Monte Carlo simulation,Mixing energy, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202003463 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202016575900.pdf 未授權公開取用 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
