請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67869
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍 | |
dc.contributor.author | Fang-Yi Ye | en |
dc.contributor.author | 葉芳宜 | zh_TW |
dc.date.accessioned | 2021-06-17T01:54:59Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-21 | |
dc.identifier.citation | 1. Beija, M.; Marty, J. D.; Destarac, M., RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids. Prog. Polym. Sci. 2011, 36 (7), 845-886.
2. Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35 (3), 357-401. 3. Utracki, L. A.; Sepehr, M.; Boccaleri, E., Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym. Adv. Technol. 2007, 18 (1), 1-37. 4. Lin, J. J.; Chan, Y. N.; Lan, Y. F., Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. Materials 2010, 3 (4), 2588-2605. 5. Giannelis, E. P., Polymer Layered Silicate Nanocomposites. Adv. Mater. 1996, 8 (1), 29–35. 6. Chiu, C. W.; Lin, J. J., Self-assembly behavior of polymer-assisted clays. Prog. Polym. Sci. 2012, 37 (3), 406-444. 7. Suprakas, S. R.; Masami, O., Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28 (11), 1539-1641. 8. Ray, S. S.; Yamada, K.; Okamoto, M.; Ueda, K., Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material. Nano Lett. 2002, 2 (10), 1093–1096. 9. Giannelis, E. P., Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 1998, 12 (10-11), 675-680. 10. Kiliaris, P.; Papaspyrides, C. D., Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35 (7), 902-958. 11. Giannelis, E. P., Polymer-Layered Silicate Nanocomposites: Synthesis, Properties and Applications. Appl. Organometal. Chem. 1998, 12 (10-11), 675–680. 12. Xu, R.; Manias, E.; Snyder, A. J.; Runt, J., New biomedical poly(urethane uera)-layered silicate nanocomposites. Macromolecules 2001, 34 (2), 337-339. 13. Messersmith, P. B.; Giannelis, E. P., Synthesis and barrier properties of poly( 1 -caprolactone)-layered silicate nanocomposites. J. Polym. Sci, Part A: Polym. Chem. 1995, 33 (7), 1047–1057. 14. Bharadwaj, R. K., Modeling the barrier properties of polymerlayered silicate nanocomposites. Macromolecules 2001, 34 (26), 1989–1992. 15. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R.; Jr., Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites. Chem. Mater. 2000, 12 (7), 1866-1873. 16. Gilman, J. W., Flammability studies of polymer-layered silicate nanocomposites. Appl. Clay Sci. 1999, 15 (1-2), 31–49. 17. in, J.J.; Cheng, I. J.; Chu, C.C., High Compatibility of the Poly(oxypropylene)amine-Intercalated Montmorillonite for Epoxy. Polymer Journal 2003, 35 (5), 411-416. 18. Singh, C.; Balazs, A. C., Effect of polymer architecture on the miscibility of polymer/clay mixtures. Polym. Int. 2000, 49 (5), 469-471. 19. Chiu, C. W.; Huang, T. K.; Wang, Y. C.; Alamani, B. G.; Lin, J. J., Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci. 2014, 39 (3), 443-485. 20. Saha, B.; Streat, M., Transesterification of cyclohexyl acrylate with n-butanol and 2-ethylhexanol: acid-treated clay, ion exchange resins and tetrabutyl titanate as catalysts. React. Funct. Polym. 1999, 40 (1), 13-27. 21. Vaccari, A., Clays and catalysis: a promising future. Appl. Clay Sci. 1999, 14 (4), 161–198. 22. Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S., Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 2003, 10 (3), 159–170. 23. Mortland, M. M.; Raman, K. V., Surface Acidity of Smectites in Relation to Hydration, Exchangeable Cation, and Structure. Clays Clay Miner. 1968, 16 (5), 393-398. 24. Lai, Y. H.; Chiu, C. W.; Chen, J. G.; Wang, C. C.; Lin, J. J.; Lin, K. F.; Ho, K. C., Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Sol. Energy Mater. Sol. Cells 2009, 93 (10), 1860-1864. 25. Fu, X.; Qutubuddin, S., Synthesis of polystyrene–clay nanocomposites. Mater. Lett. 2000, 42 (1-2), 12-15. 26. Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K., New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays. Chem. Mater. 2002, 14 (11), 4654–4661. 27. Hotta, S.; Paul, D. R., Nanocomposites formed from linear low density polyethylene and organoclays. Macromolecules 2004, 45 (22), 7639-7654. 28. Fu, X.; Qutubuddin, S., Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 2001, 42 (2), 807-813. 29. Kim, M. H.; Park, C. I.; Choi, W. M.; Lee, J. W.; Lim, J. G.; Park, O. O.; Kim, J. M., Synthesis and Material Properties of Syndiotactic Polystyrene/Organophilic Clay Nanocomposites. Appl. Polym. Sci. 2003, 92 (4), 2144–2150. 30. Subramani, S.; Lee, J. Y.; Choi, S. W.; Kim, J. H., Waterborne trifunctionalsilane-terminated polyurethane nanocomposite with silane-modified clay. J. Polym. Sci., Part B: Polym. Phys. 2007, 45 (19), 2747-2761. 31. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 1999, 15 (1-2), 11–29. 32. Lin, J. J.; Cheng, I. J.; Chu, C. C., High Compatibility of the Poly(oxypropylene)amine-Intercalated Montmorillonite for Epoxy. Polym. J. 2003, 35 (5), 441-446. 33. Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates. Chem. Mater. 1994, 6 (7), 1017-1022. 34. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J., Tailoring Basal Spacings of Montmorillonite by Poly(oxyalkylene)diamine Intercalation. Macromolecules 2001, 34 (26), 8832–8834. 35. Lin, J. J.; Chen, I. J.; Chou, C. C., Critical Conformational Change of Poly(oxypropylene)diamines in Layered Aluminosilicate Confinement. Macromol. Rapid Commun. 2003, 24 (8), 492–495. 36. Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J., Conformational Change of Trifunctional Poly(oxypropylene)amines Intercalated within a Layered Silicate Confinement. Macromolecules 2004, 37 (2), 473–477. 37. Wu, T.; Xie, A. G.; Tan, S. Z.; Cai, X., Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf., B 2011, 86 (1), 232-6. 38. Wang, Z. M.; Chung, T. C.; Gilman, J. W.; Manias, E., Melt-processable syndiotactic polystyrene/montmorillonite nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 2004, 41 (24), 3173-3187. 39. Chou, C. C.; Chiang, M. L.; Lin, J. J., Unusual Intercalation of Cationic Smectite Clays with Detergent-Ranged Carboxylic Ions. Macromol. Rapid Commun. 2005, 26 (23), 1841-1845. 40. Chou, C. C.; Shieu, F. S.; Lin, J. J., Preparation, Organophilicity, and Self-Assembly of Poly(oxypropylene)amine-Clay Hybrids. Macromolecules 2003, 36 (7), 2187–2189. 41. Chiou, J. Y.; Hsu, R. S.; Chiu, C. W.; Lin, J. J., A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Adv. 2013, 3 (31), 12847. 42. Zeng, C.; Lee, L. J., Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization. Polymer 2001, 34 (12), 4098-4103. 43. Okada, A.; Usuki, A., The chemistry of polymer-clay hybrids. Mater. Sci. Eng., C 1995, 3 (2), 109-115. 44. Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38 (15), 6240–6243. 45. Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C., First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. J. Phys. Chem. 2006, 110 (37), 18115–18120. 46. Liu, P., Polymer modified clay minerals: A review. Appl. Clay Sci. 2007, 38 (1-2), 64-76. 47. Lin, H. C.; Hsieh, B. Z.; Lin, Y. L.; Sheng, Y. J.; Lin, J. J., Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids. J. Colloid Interface Sci. 2012, 387 (1), 106-114. 48. Ginzburg, V. V.; Singh, C.; Balazs, A. C., Theoretical Phase Diagrams of Polymer/Clay Composites: The Role of Grafted Organic Modifiers. Macromolecules 2000, 33 (3), 1089–1099. 49. Fan, X.; Xia, C.; Advincula, R. C., Grafting of Polymers from Clay Nanoparticles via In Situ Free Radical Surface-Initiated Polymerization: Monocationic versus Bicationic Initiators. Langmuir 2003, 19 (10), 4381–4389. 50. Zhou, Q.; Fan, X.; Xia, C.; Mays, J.; Advincula, R., Living Anionic Surface Initiated Polymerization (SIP) of Styrene from Clay Surfaces. Chem. Mater. 2001, 13 (8), 2465–2467. 51. Zhao, H.; Shipp, D. A., Preparation of Poly(styrene-block-butylacrylate) Block Copolymer-Silicate Nanocomposites. Chem. Mater. 2003, 15 (14), 2693-2695. 52. Sedjo, R. A.; Mirous, B. K.; Brittain, W. J., Synthesis of Polystyrene-block-poly(methylmethacrylate) Brushes by Reverse Atom Transfer Radical Polymerization. Macromolecules 2000, 33 (5), 1492–1493. 53. Wheeler, P. A.; Wang, J.; Mathias, L. J., Poly(methyl methacrylate)/Laponite Nanocomposites:Exploring Covalent and Ionic Clay Modifications. Chem. Mater. 2006, 18 (17), 3937–3945. 54. Wheeler, P. A.; Wang, J.; Baker, J.; Mathias, L. J., Synthesis and Characterization of Covalently Functionalized Laponite Clay. Chem. Mater. 2005, 17 (11), 3012–3018. 55. Jauhari, J.; Liao, C. Y.; Chiou, J. Y.; Chang, S. J.; Tsai, Y. T.; Lin, J. J., Functionalizing and molecular bonding nanoscale silicate-polymer composites of epoxies and Polyacrylates. J. Polym. Res. 2016, 24 (1). 56. Montenegro, J. M.; Grazu, V.; Sukhanova, A.; Agarwal, S.; Fuente, J. M. d. l.; Nabiev, I.; Greiner, A.; Parak, W. J., Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev. 2013, 65 (5), 677-88. 57. Cheng, A. J.; Lin, T. Y.; Yang, C. H.; Lee, S. H.; Huang, R. A.; Sperling, M. Z.; Jimmy, K. L.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Wolfgang, J. P.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. NANO 2009, 3 (2), 395–401. 58. Biju, V., Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43 (3), 744-64. 59. Hermanson, G. T. (2013). Chapter 4 – Zero-Length Crosslinkers. Bioconjugate Techniques, Elsevier Inc.: 259-273. 60. Gilles, M. A.; Hudson, A. Q.; Borders, C. L.; Jr., C. L. B., Stability of Water-Soluble Carbodiimides in Aqueous Solution Anal. Biochem. 1990, 182 (2), 244-248. 61. Nakajima, N.; Ikada, Y., Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjugate Chem. 1995, 6 (1), 123-130. 62. Chen, Y. M.; Lin, H. C.; Hsu, R. S.; Hsieh, B. Z.; Su, Y. A.; Sheng, Y. J.; Lin, J. J., Thermoresponsive Dual-Phase Transition and 3D Self-Assembly of Poly(N-Isopropylacrylamide) Tethered to Silicate Platelets. Chem. Mater. 2009, 21 (17), 4071-4079. 63. Wei, J.C.; Yen, Y.T.; Su, H.L.; Lin, J.J., Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. J. Phys. Chem. C 2011, 115 (38), 18770-18775. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67869 | - |
dc.description.abstract | 本研究旨在討論奈米矽片的改質與應用。由於矽片的邊緣有許多官能基,其每片約有18,000個 ≡Si–O-Na+ 以及100,000-300,000個 ≡Si–OH 官能基作為反應點,因此可藉由化學反應將小分子以共價鍵的方式連接至矽片邊緣。在此,利用琥珀酸二甲酯與矽片邊緣的官能基(≡Si–O-Na+)進行酯交換反應得NSP–DMS;以及利用四乙氧基矽烷與矽片邊緣的官能基(≡Si–OH)進行溶膠凝膠反應得NSP–TEOS。並且,利用熱重力分析、固態矽譜、穿透式顯微鏡等儀器鑑定NSP–DMS以及NSP–TEOS。而更進一步的,我們將NSP–DMS和NSP–TEOS分別摻入壓克力樹脂並將其於玻璃基材上成膜,可使其膜硬度有效提高並具有高度透明性。
另一部份,根據前面將小分子修飾於矽片邊緣的研究基礎,更進一步的嘗試利用共價連接大分子於矽片邊緣,如溶菌酶,生成NSP–lysozyme並以熱重力分析之。而於檢測NSP–lysozyme活性時,卻意外的發現矽片接枝lysozyme或矽片混摻lysozyme皆可以使lysozyme殺菌能力降低,進而可得知矽片亦可使蛋白質降低活性。 | zh_TW |
dc.description.abstract | The object of this research is to study the modification and applications of Nanoscale Silicate Platelets (NSP) that were previously prepared from the exfoliation of naturally occurring clays. The silicate platelets were allowed to tether linkers through covalent bonding with the estimated number of 18,000 ≡Si–O-Na+ sites and 100,000-300,000 siloxanol functionalities (≡Si–OH) per platelet. The silicate platelets were then modified by grafting the linker, dimethyl succinate, via transesterification to afford NSP–DMS. The second method is to use sol–gel reaction with tetraethyl orthosilicate as the linker to form NSP–TEOS. Both of NSP–DMS and NSP–TEOS were characterized by using thermogravimetric analysis, silicon nuclear magnetic resonance, and transmission electron microscopy. The two NSP–linkers were used to blend into a typical formulation of acrylic resins. The effectiveness for enhancing hardness of the resultant films while maintaining the excellent transparency was achieved.
According to the previous works of small molecule tethering, we further established the NSP tethering with a macromolecule, such as lysozyme, through an amide functionality. The NSP–lysozyme conjugate was also characterized by using thermogravimetric analysis. During the testing for the lysozyme activity, a serendipity was found for the NSP strongly interacting with an enzyme and actually deactivating the biomaterial’s normal function of antimicrobial ability. The finding was observed in both of NSP physical blending and covalently bonding with the lysozyme enzyme. The finding has the implications of designing new method of protein fixation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:54:59Z (GMT). No. of bitstreams: 1 ntu-106-R04549040-1.pdf: 3281941 bytes, checksum: 15bcf3566c583216bdb05853cc33c643 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書.........................................i
謝誌...................................................ii 中文摘要...............................................iii Abstract...............................................iv Index..................................................vi List of Figures........................................ix List of Tables........................................xii Chapter 1. Introduction and literature review...........1 1.1 Classification of nanomaterials.................1 1.2 Layered structure of natural clays..............3 1.3 Intercalation and exfoliation of layered clays..6 1.4 Modification of Nanoscale Silicate Platelets (NSPs) on the edges....................................13 1.4.1 Modification of NSP by sol-gel reaction..........14 1.4.2 Sol-gel reaction followed by ATRP................18 1.4.3 Sol-gel reaction followed by ring-opening reaction...............................................19 1.4.4 Sol-gel reaction followed by carbodiimide reaction...............................................21 Chapter 2. Experimental section........................27 2.1 Materials..........................................27 2.2 Preparation of NSP–DMS.............................29 2.3 Preparation of NSP–TEOS............................30 2.4 Preparation of NSP–amine...........................31 2.5 Preparation of NSP–lysozyme........................32 2.6 Preparation of the films...........................33 2.7 Characterization...................................34 Chapter 3. Result and discussion.......................36 3.1 Tethering DMS onto NSP edges via transesterification....................................36 3.1.1 Thermogravimetric analysis of NSP–DMS............36 3.1.2 Hardness of the films blended NSP–DMS in UV-curing resins.................................................39 3.2 Tethering TEOS onto NSP edges via sol-gel reaction...............................................42 3.2.1 Structural characterizations of NSP–TEOS.........42 3.2.2 Hardness of the films blended NSP–TEOS in UV-curing resins.................................................44 3.3 Tethering APTES onto NSP edges via sol-gel reaction...............................................47 3.3.1 Thermogravimetric analysis of NSP–amine..........47 3.3.2 Structural characterizations of NSP–amine........48 3.4 Tethering lysozyme onto NSP edges via carbodiimide reaction...............................................50 3.4.1 Thermogravimetric analysis of NSP–lysozyme conjugate..............................................50 3.4.2 Activity testing of NSP–lysozyme conjugate.......51 Chapter 4. Conclusion..................................54 Chapter 5. Reference...................................55 | |
dc.language.iso | en | |
dc.title | 化學法轉化奈米矽片應用於光學膜硬度與蛋白質結合 | zh_TW |
dc.title | Chemical Conversion of Nanoscale Silicate Platelets for Optical Film Hardness and NSP–protein Conjugate | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 童世煌 | |
dc.contributor.oralexamcommittee | 李宗銘,何永盛,王逸萍 | |
dc.subject.keyword | 黏土,奈米矽片改質,奈米複合材料,膜硬度,矽片接枝蛋白質, | zh_TW |
dc.subject.keyword | clay,modification of nanoscale silicate platelets (NSP),nanohybrids,hardness of the film,protein conjugate, | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU201701858 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。