Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江皓森(Hao-Sen Chiang)
dc.contributor.authorChen-Min Wengen
dc.contributor.author翁甄敏zh_TW
dc.date.accessioned2021-06-17T01:53:27Z-
dc.date.available2027-12-31
dc.date.copyright2017-07-28
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citation1. Brown, G.D., D.W. Denning, and S.M. Levitz, Tackling human fungal infections. Science, 2012. 336(6082): p. 647.
2. Schulze, J. and U. Sonnenborn, Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int, 2009. 106(51-52): p. 837-42.
3. Ott, S.J., et al., Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol, 2008. 43(7): p. 831-41.
4. Hamad, I., et al., Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS One, 2012. 7(7): p. e40888.
5. Gow, N.A. and B. Hube, Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol, 2012. 15(4): p. 406-12.
6. Shibata, N., et al., Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. The Biochemical Journal, 2007. 404(Pt 3): p. 365-372.
7. Lowman, D.W., et al., Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem, 2014. 289(6): p. 3432-43.
8. Munro, C.A., et al., Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology, 1998. 144 ( Pt 2): p. 391-401.
9. Brown, G.D. and S. Gordon, Immune recognition. A new receptor for beta-glucans. Nature, 2001. 413(6851): p. 36-7.
10. Goodridge, H.S., et al., Activation of the innate immune receptor Dectin-1 upon formation of a /`phagocytic synapse/'. Nature, 2011. 472(7344): p. 471-475.
11. Brown, G.D., et al., Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med, 2002. 196(3): p. 407-12.
12. van Bruggen, R., et al., Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles. Mol Immunol, 2009. 47(2-3): p. 575-81.
13. Gazendam, R.P., et al., Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood, 2014. 124(4): p. 590-7.
14. Kolaczkowska, E. and P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013. 13(3): p. 159-75.
15. Nathan, C., Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol, 2006. 6(3): p. 173-182.
16. Segal, A.W., How neutrophils kill microbes. Annu Rev Immunol, 2005. 23: p. 197-223.
17. Borregaard, N., Neutrophils, from marrow to microbes. Immunity, 2010. 33(5): p. 657-70.
18. Nicolás-Ávila, J.Á., J.M. Adrover, and A. Hidalgo, Neutrophils in Homeostasis, Immunity, and Cancer. Immunity, 2017. 46(1): p. 15-28.
19. Summers, C., et al., Neutrophil kinetics in health and disease. Trends Immunol, 2010. 31(8): p. 318-24.
20. Singer, M. and P.J. Sansonetti, IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol, 2004. 173(6): p. 4197-206.
21. Baggiolini, M. and I. Clark-Lewis, Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett, 1992. 307(1): p. 97-101.
22. El-Benna, J., P.M. Dang, and M.A. Gougerot-Pocidalo, Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol, 2008. 30(3): p. 279-89.
23. Amulic, B., et al., Neutrophil function: from mechanisms to disease. Annu Rev Immunol, 2012. 30: p. 459-89.
24. Nauseef, W.M., How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev, 2007. 219: p. 88-102.
25. Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science, 2004. 303(5663): p. 1532-5.
26. Urban, C.F., et al., Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009. 5(10): p. e1000639.
27. Papayannopoulos, V., et al., Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010. 191(3): p. 677-91.
28. Vorobjeva, N.V. and B.V. Pinegin, Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc), 2014. 79(12): p. 1286-96.
29. Fuchs, T.A., et al., Novel cell death program leads to neutrophil extracellular traps. J Cell Biol, 2007. 176(2): p. 231-41.
30. Yipp, B.G. and P. Kubes, NETosis: how vital is it? Blood, 2013. 122(16): p. 2784-94.
31. Brinkmann, V. and A. Zychlinsky, Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol, 2012. 198(5): p. 773-83.
32. Metzler, Kathleen D., et al., A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Reports, 2014. 8(3): p. 883-896.
33. Neeli, I., S.N. Khan, and M. Radic, Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol, 2008. 180(3): p. 1895-902.
34. Li, P., et al., PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. The Journal of Experimental Medicine, 2010. 207(9): p. 1853-1862.
35. Wang, Y., et al., Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol, 2009. 184(2): p. 205-13.
36. Yang, H., et al., New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Frontiers in Immunology, 2016. 7: p. 302.
37. Branzk, N. and V. Papayannopoulos, Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol, 2013. 35(4): p. 513-30.
38. Jorch, S.K. and P. Kubes, An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med, 2017. 23(3): p. 279-287.
39. Pilsczek, F.H., et al., A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol, 2010. 185(12): p. 7413-25.
40. Yipp, B.G., et al., Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med, 2012. 18(9): p. 1386-93.
41. Rochael, N.C., et al., Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites. Sci Rep, 2015. 5: p. 18302.
42. Buchanan, J.T., et al., DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol, 2006. 16(4): p. 396-400.
43. Juneau, R.A., et al., Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps. Infect Immun, 2011. 79(1): p. 431-8.
44. Branzk, N., et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014. 15(11): p. 1017-25.
45. Kaplan, M.J. and M. Radic, Neutrophil extracellular traps (NETs): Double-edged swords of innate immunity. Journal of immunology (Baltimore, Md. : 1950), 2012. 189(6): p. 2689-2695.
46. Lehrer, R.I. and M.J. Cline, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest, 1969. 48(8): p. 1478-88.
47. Bianchi, M., et al., Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood, 2009. 114(13): p. 2619-22.
48. Neeli, I., et al., Regulation of extracellular chromatin release from neutrophils. J Innate Immun, 2009. 1(3): p. 194-201.
49. Fletcher, D.A. and R.D. Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485-492.
50. Howard, J. and A.A. Hyman, Dynamics and mechanics of the microtubule plus end. Nature, 2003. 422(6933): p. 753-758.
51. Gelfand, V.I. and A.D. Bershadsky, Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol, 1991. 7: p. 93-116.
52. Blanchoin, L., et al., Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev, 2014. 94(1): p. 235-63.
53. Lee, S.H. and R. Dominguez, Regulation of actin cytoskeleton dynamics in cells. Mol Cells, 2010. 29(4): p. 311-25.
54. Raftopoulou, M. and A. Hall, Cell migration: Rho GTPases lead the way. Dev Biol, 2004. 265(1): p. 23-32.
55. Wittmann, T. and C.M. Waterman-Storer, Cell motility: can Rho GTPases and microtubules point the way? J Cell Sci, 2001. 114(Pt 21): p. 3795-803.
56. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature, 2002. 420(6916): p. 629-635.
57. Hodge, R.G. and A.J. Ridley, Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol, 2016. 17(8): p. 496-510.
58. Birkenfeld, J., et al., Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol, 2008. 18(5): p. 210-9.
59. Birkenfeld, J., et al., GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell, 2007. 12(5): p. 699-712.
60. Krendel, M., F.T. Zenke, and G.M. Bokoch, Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol, 2002. 4(4): p. 294-301.
61. Fukazawa, A., et al., GEF-H1 Mediated Control of NOD1 Dependent NF-κB Activation by Shigella Effectors. PLoS Pathogens, 2008. 4(11): p. e1000228.
62. Shimada, K., et al., The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection. PLoS Pathog, 2009. 5(4): p. e1000379.
63. Zhao, Y., et al., Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1. Inflamm Bowel Dis, 2012. 18(4): p. 603-12.
64. Chiang, H.-S., et al., GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol, 2014. 15(1): p. 63-71.
65. Blyth, C.C., et al., Not just little adults: candidemia epidemiology, molecular characterization, and antifungal susceptibility in neonatal and pediatric patients. Pediatrics, 2009. 123(5): p. 1360-8.
66. Gudlaugsson, O., et al., Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis, 2003. 37(9): p. 1172-7.
67. Swamydas, M., et al., CXCR1-mediated neutrophil degranulation and fungal killing promote <em>Candida</em> clearance and host survival. Science Translational Medicine, 2016. 8(322): p. 322ra10.
68. Byrd, A.S., et al., An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol, 2013. 190(8): p. 4136-48.
69. Wanten, G.J., et al., Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions. JPEN J Parenter Enteral Nutr, 2001. 25(1): p. 9-13.
70. Huang, I.H., et al., GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment. Journal of Cell Science, 2014. 127(19): p. 4186-4200.
71. Fine, N., et al., GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation. J Cell Biol, 2016. 215(1): p. 107-119.
72. Kakiashvili, E., et al., GEF-H1 Mediates Tumor Necrosis Factor-α-induced Rho Activation and Myosin Phosphorylation: ROLE IN THE REGULATION OF TUBULAR PARACELLULAR PERMEABILITY. The Journal of Biological Chemistry, 2009. 284(17): p. 11454-11466.
73. Palmer, L.J., et al., Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin Exp Immunol, 2012. 167(2): p. 261-8.
74. Wolf, K., et al., Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol, 2013. 201(7): p. 1069-84.
75. Urban, C.F., et al., Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol, 2006. 8(4): p. 668-76.
76. Sohn, K., et al., EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol, 2003. 47(1): p. 89-102.
77. Lo, H.J., et al., Nonfilamentous C. albicans mutants are avirulent. Cell, 1997. 90(5): p. 939-49.
78. Stoiber, W., et al., The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules, 2015. 5(2): p. 702-723.
79. Lim, M.B., et al., Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol, 2011. 90(4): p. 771-6.
80. Papayannopoulos, V. and A. Zychlinsky, NETs: a new strategy for using old weapons. Trends Immunol, 2009. 30(11): p. 513-21.
81. Kolaparthy, L.K., et al., Neutrophil extracellular traps: Their role in periodontal disease. Journal of Indian Society of Periodontology, 2014. 18(6): p. 693-697.
82. Gray, R.D., et al., Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J Inflamm (Lond), 2013. 10(1): p. 12.
83. Brinkmann, V. and A. Zychlinsky, Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol, 2007. 5(8): p. 577-82.
84. Clark, S.R., et al., Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med, 2007. 13(4): p. 463-9.
85. Garcia-Romo, G.S., et al., Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med, 2011. 3(73): p. 73ra20.
86. Munks, M.W., et al., Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood, 2010. 116(24): p. 5191-9.
87. Pathak, R., et al., The Microtubule-associated Rho Activating Factor GEF-H1 interacts with Exocyst complex to regulate Vesicle Traffic. Developmental cell, 2012. 23(2): p. 397-411.
88. Ren, Y., et al., Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem, 1998. 273(52): p. 34954-60.
89. Hart, M.J., et al., Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem, 1994. 269(1): p. 62-5.
90. Zheng, Y., et al., The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem, 1996. 271(52): p. 33169-72.
91. Bos, J.L., H. Rehmann, and A. Wittinghofer, GEFs and GAPs: critical elements in the control of small G proteins. Cell, 2007. 129(5): p. 865-77.
92. Zenke, F.T., et al., p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem, 2004. 279(18): p. 18392-400.
93. Glaven, J.A., et al., The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem, 1999. 274(4): p. 2279-85.
94. Rossman, K.L., C.J. Der, and J. Sondek, GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 2005. 6(2): p. 167-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67846-
dc.description.abstract白色念珠菌(Candida albicans)是人類常見的共生真菌,然而當免疫能力失調時,它也會轉變成伺機型病原菌導致疾病。嗜中性白血球(Neutrophils)是在哺乳類體內中數量最多的白血球,且在對抗真菌的免疫反應扮演非常重要的角色。近期研究發現嗜中性白血球有個特殊的殺菌機制,會將細胞核的染色體結構解旋後釋放出去,稱為嗜中性胞外網狀結構(Neutrophil Extracellular Traps, NETs),這種網狀結構會纏繞病原菌,使其無法擴散,然後促進其清除和分解。由於微小管(Microtubules)和肌動蛋白(Actins)會調控NETs的形成,且Guanine nucleotide exchange factor H1 (GEF-H1)可以藉由調節RhoA GTPases的活性,進而影響下游微小管和肌動蛋白的動態平衡,因此本論文欲探討GEF-H1在NETs形成時所扮演的角色。藉由使用缺乏GEF-H1的基因改造小鼠,發現GEF-H1並不會影響嗜中性白血球在骨髓中的生成,也不會改變嗜中性白血球內的微小管與肌動蛋白的結構。利用Phorbol 12-myristate 13-acetate (PMA)刺激嗜中性白血球讓其產生NETs,發現在GEF-H1缺陷的小鼠嗜中性白血球的活性氧化物質(Reactive oxygen species, ROS)形成量不受影響,但Neutrophil elastase (NE)、Myeloperoxidase (MPO)和瓜氨酸化組蛋白H3 (Citrullinated histone H3, citH3)在細胞核內的表現量卻減少,且進而影響到NETs形成明顯下降的現象。當將菌絲狀(hyphae)的白色念珠菌與嗜中性白血球一同培養時,和正常的嗜中性白血球相比,缺少GEF-H1的嗜中性白血球形成較少的NETs。綜合以上實驗結果,可推論GEF-H1會調控NETs形成。zh_TW
dc.description.abstractCandida albicans is common commensal fungi in human. However, they can also cause fetal disease in immunocompromised patients. Neutrophils are the most abundant type of white blood cells in most mammals, and play a critical role in defense of fungal infection. Previous studies have shown that neutrophils trap and kill a variety of pathogens by neutrophil extracellular traps (NETs), whose formation depends on histone citrullination and dynamic microtubule networks. The guanine nucleotide exchange factor H1 (GEF-H1) is crucial in coupling microtubule dynamics to RhoA GTPase activation in a variety of normal biological situations. It is also a newly defined component of cellular defenses for the detection of microbial effectors during cell invasion by pathogens. However, it remains unknown whether GEF-H1 regulates NET formation in response to pathogen infection. Here I show that GEF-H1 did not affect granulopoiesis of neutrophils in the bone marrow. The actin and microtubule networks were comparable between mouse naïve wild-type and GEF-H1-deficient neutrophils. In naive state, the level of citrullinated histone 3 was reduced in GEF-H1–deficient neutrophils. After activation by phorbol 12-myristate 13-acetate (PMA), the rate of NET release was reduced in GEF-H1–deficient neutrophils compared to wild-type neutrophils. The reduced NET formation in GEF-H1-deificient neutrophils was not to due to the impaired reactive oxygen species (ROS) production. The decreased translocation of neutrophil elastase (NE) and myeloperoxidase (MPO) into nucleus and histone H3 citrulination was observed in GEF-H1-deficient neutrophils. I further found that GEF-H1 deficiency lead to impaired NET formation, ROS production and antifungal immunity in response to Candida albicans infection. Overall, our results suggested a potential role for GEF-H1 in the regulation of NET formation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:53:27Z (GMT). No. of bitstreams: 1
ntu-106-R04b21005-1.pdf: 5467541 bytes, checksum: 0257c8b9225ba465abff78492032398c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT v
Contents vii
List of figures x
Chapter 1 Introduction 1
1.1 Candida albicans 1
1.2 Neutrophils 2
1.2.1 Granulopoiesis and innate immune response 2
1.2.2 Neutrophil extracellular traps 3
1.3 GEF-H1 6
1.3.1 Cell cytoskeleton 6
1.3.2 Function of GEF-H1 6
1.3.3 The function of GEF-H1 in immunity 7
1.4 Specific aim 8
Chapter 2 Materials and Methods 10
2.1 Mice 10
2.2 Genotyping of the Arhgef2+/+, Arhgef2+/−, and Arhgef2−/− mice 10
2.3 Isolation of murine neutrophils from bone marrow 11
2.4 Flow cytometry 12
2.5 Fungal culture and hyphal filamentation 13
2.6 Quantification of NET formation 13
2.7 Immunofluorescence Visualization of NETs 14
2.8 Immunoblotting 15
Chapter 3 Results 17
3.1 Comparable amounts of neutrophils are detected in the bone marrow of WT and Arhgef2-/- mice 17
3.2 NET formation in response to PMA activation is impaired in GEF-H1-deficient neutrophils 18
3.3 Chromatin decondensation and histone citrullination induced by PMA stimulation are impaired in GEF-H1-deficient neutrophils 20
3.4 NET formation in response to Candida albicans infection is impaired in GEF-H1-deficient neutrophils 21
3.5 ROS production in response to Candida albicans infection are impaired in GEF-H1-deficient neutrophils 23
Chapter 4 Discussion 25
Chapter 5 Conclusion 31
Reference 32
Figures 44
Tables 59
Appendix 61
dc.language.isoen
dc.titleGEF-H1調控嗜中性白血球胞外網狀結構的形成zh_TW
dc.titleThe impact of GEF-H1 on neutrophil extracellular traps formationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賈景山(Jean-San Chia),陳俊任(Chun-Jen Chen),鍾筱菁(Chiau-Jing Jung)
dc.subject.keyword白色念珠菌,嗜中性白血球,嗜中性胞外網狀結構,GEF-H1,活性氧化物質,瓜氨酸化組蛋白H3,zh_TW
dc.subject.keywordCandida albicans,Neutrophils,Neutrophil extracellular traps,GEF-H1,Reactive oxygen species,Citrullinated histone H3,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201701793
dc.rights.note有償授權
dc.date.accepted2017-07-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved