請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67815| 標題: | 三維封閉加權擬埃爾米特流形上韋頓-子拉普拉斯算子第一特徵值之下界估計 A First Eigenvalue Estimate of Witten sub-Laplacian Operator on Three-Dimensional Closed Weighted Pseudo-Hermitian Manifold |
| 作者: | Keng-Hung Steven Lin 林耿弘 |
| 指導教授: | 張樹城(Shu-Cheng Chang) |
| 關鍵字: | 柯西-黎曼幾何,幾何分析,加權擬埃爾米特流形,韋頓-子 拉普拉斯算子,四階微分算子,第一特徵值下界估計, CR geometry,geometric analysis,weighted pseudohermitian manifold,Witten sub-Laplacian operator,four-ordered differential operator,first eigenvalue estimate, |
| 出版年 : | 2017 |
| 學位: | 碩士 |
| 摘要: | 在本文中,作者在一個搭配特殊條件下有權重的三維的封閉擬埃爾米特流形上,給出加權柯西-黎曼萊利形式方程,並在同樣條件下利用該方程給出該流形上的韋頓-子拉普拉斯算子(Witten sub-Laplacian)的一個第一特徵值的一個下界。 In this thesis, I derive a weighted CR-Reilly’s type equation on a 3-dimensional closed weighted pseudohermitian manifold under some assumptions, and obtain a lower bound estimate for the first eigenvalue of the Witten sub-Laplacian operator on a 3-dimensional closed weighted pseudohermitian manifold under the same assumptions. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67815 |
| DOI: | 10.6342/NTU201701755 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 478.76 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
