Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67762
標題: 使用電力資訊進行主動式學習以應用於家電異常偵測
Using Electric Power Information for Active Learning to Home Appliance Anomaly Detection
作者: Che-Yu Chang
張哲瑜
指導教授: 張瑞益(Ray-I Chang)
共同指導教授: 丁肇隆(Chao-Lung Ting)
關鍵字: 智慧電表,主動式學習,異常偵測,一元分類,虛擬標記,
smart meter,active learning,anomaly detection,one-class classification,pseudo label,
出版年 : 2017
學位: 碩士
摘要: 電器老舊或電器使用行為不當所造成火災或故障傷害,成為影響家庭安全的主要因素,如何有效偵測家電異常情況並預先警示使用者進行更換或改善,成為一項重要研究議題。本研究針對此議題結合物聯網與大數據分析技術,應用智慧電表資料分析提出了一套主動式學習的家電異常偵測方法,改善以往方法樣本收集不易的情況。以家庭常見的電器-電風扇為例進行相關驗證,其結果顯示我們的方法較傳統方法能有效改善偵測誤差。異常偵測的結果可讓使用者參考以進行相關電器保養及更換措施,避免因電器故障所引發的危害。
Fire and accidental damage caused by appliance aging or improper operating are the main factors of home security. Therefore, how to detect the anomaly of appliances and promptly warn the users to replace or pay attention to the improvement of the appliances become an important research topic. In this study, we combine the Internet of Things and big data analysis technology to this issue and apply smart meter data analysis to propose an anomaly detection method based on active learning to detect home appliance operation anomaly and to overcome the situation that collecting anomaly label is not easy. The experience use fans as measurement targets for proposed method. The results show that this approach compared to traditional anomaly detection method effectively improve the detection error. Users can refer to the results of anomaly detection to carry out the relevant electrical maintenance and replacement measures to avoid the electrical fault happens and cause harm.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67762
DOI: 10.6342/NTU201701898
全文授權: 有償授權
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.15 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved