請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃文達 | |
| dc.contributor.author | Hui-Chen Huang | en |
| dc.contributor.author | 黃薈臻 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:48:09Z | - |
| dc.date.available | 2022-08-04 | |
| dc.date.copyright | 2017-08-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-25 | |
| dc.identifier.citation | 岡田忠司、杉下朋子、村上太郎、村井弘道、三枝貴代、堀野俊郎、小野田明彥、 梶本修身、高橋勵、高橋丈夫。2000。γ-アミノ酪酸蓄積脱脂コメ胚芽の経口投与における更年期障害及び初老期精神障害に対する効果. 日本食品科學工學會誌,47(8),頁596-603。
許志鴻、蔡碧仁。2009。台灣藜成分之應用與開發(第1年/全程2年)。行政院農業委員會林務局98年度科技計畫研究報告。 郭耀綸。2006。民族植物紅藜的栽培與生態生理特性(第1年/全程3年)。行政院農業委員會林務局95年度科技計畫研究報告。 郭耀綸。2007。民族植物紅藜的永續利用研究(第2年/全程3年)。行政院農業委員會林務局96年度科技計畫研究報告。 陳振義。台灣藜之應用。2012。台東區農情月刊,148,行政院農業委員會台東區農業改良場編印。 陳蓉蓉。2015。帶殼與不帶殼台灣藜之安全性評估。碩士論文。大葉大學生物產業科技學系。台灣博碩士論文知識加值系統。 程威威、吳躍、林親錄、周婷、丁玉琴、王曉映。2014。HPLC法測定發芽糙米中γ-氨基丁酸中不同衍生方式的比較研究。中國農學通報,30(9),頁279-284。 黃祥庭。2010。台灣藜對三種植食性害蟲之忌避效果。碩士論文。台灣大學昆蟲學研究所。台灣博碩士論文知識加值系統。 潘思穎。2013。以脂肪細胞探討台灣藜中具調節血糖之活性成分。碩士論文。台灣大學食品科技研究所。 蔡碧仁。2006。民族植物紅藜之營養及機能性成分之永續利用(第1年/全程3年)。行政院農業委員會林務局九十五年度科技計畫研究報告。 蔣永正。2011。植物對環境逆境之調控與應用。農政與農情,231。 黎孝韻、曾國慶。2008。自由基及抗氧化物功能的探討。藥學雜誌,95,頁95-103。 Abdou AM, S Higashiguchi, K Horie, M Kim, H Hatta & H Yokogoshi. (2006). Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. BioFactors. 26(3): 201-208. Adeghate E & AS Ponery. (2002). GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue and Cell. 34(1): 1-6. Ahmad P, CA Jaleel, MA Salem, G Nabi & S Sharma. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology. 30(3): 161-175. Al-Quraan NA & HA Al-Omari. (2016). GABA accumulation and oxidative damage responses to salt, osmotic and H2O2 treatments in two lentil (Lens culinaris Medik) accessions. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 151(3): 148-157. Bai Q, R Yang, L Zhang & Z Gu. (2013). Salt Stress Induces Accumulation of γ–Aminobutyric Acid in Germinated Foxtail Millet (Setaria italica L.). Cereal Chemistry. 90(2): 145-149. Basu TK, B Ooraikul & F Yang. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition. 52(4): 319-330. Batushansky A, M Kirma, N Grillich, PA Pham, D Rentsch, G Galili, AR Fernie & A Fait. (2015). The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis. Frontiers in Plant Science. 6(785): 1-10 Baum G, Y Chen, T Arazi, H Takatsuji & H Fromm. (1993). A plant glutamate decarboxylase containing a calmodulin binding domain. The journal of biological chemistry. 268. Boisa JF, T Winkel, JP Lhomme, JP Raffaillac & A Rocheteau. (2006). Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. Europ. J. Agronomy. 25: 299-308. Bolarín MC, A Santa-Cruz, E Cayuela & F Pérez-Alfocea. (1995). Short-term Solute Changes in Leaves and Roots of Cultivated and Wild Tomato Seedlings Under Salinity. Journal of Plant Physiology. 147(3): 463-468. Boo HO, BG Heo, S Gorinstein & SU Chon. (2011). Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 181(4):479-484. Bouché N & H Fromm. (2004). GABA in plants: just a metabolite? Trends in Plant Science. 9(3): 110-115. Bown AW & BJ Shelp. (1997). The-Metabolism-and-Functions-of-y-Aminobutyric-Acid. Plant Physiol. 115: 1-5. Carciochi RA, GD Manrique & K Dimitrov. (2014). Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal. 21(2): 767-773. Chang JS, BS Lee & TG Kim. (1992). Change in γ-Aminobutyric Acid(GABA) and the Main Constituents by a Treatment Conditions and of a Anaerobically Treated Green Tea Leaves. KOREAN J. FOOD SCI. TECHNOL. 24(4): 315-319. Chayen J. (1953). Ascorbic Acid and Its Intracellular Localization, with Special Reference to Plants**The preparation of this review, and some of the work described in it, have been aided by a grant from the British Empire Cancer Campaign. International Review of Cytology. 2: 77-131. Chen PY, KC Chang, TC Hsiung, KH Lin, MY Huang, CH Wu & CM Yang. (2015). The antioxidant activity of methanol extract of black bean. Weed Sci. Bull. 36(2): 113-130. Chio EH, EC Yang, HT Huang, EL Hsu, CR Chen, CG Huang & RN Huang. (2013). Toxicity and repellence of Taiwanese indigenous djulis, Chenopodium formosaneum, against Aedes albopictus (Diptera: Culicidae) and Forcipomyia taiwana (Diptera: Ceratopogonidae). Journal of Pest Science, 86(4), 705-712. Chu CC, SY Chen, CC Chyau, ZH Fu, CC Liu & PD Duh. (2016). Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. Journal of Functional Foods. 26: 585-597. Chung HJ, SH Jang, HY Cho & ST Lim. (2009). Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. LWT - Food Science and Technology. 42(10): 1712-1716. Chung AL, HF Lo, KH Lin, KC Liu, CM Yang & PY Chao. (2013). Study on the Antioxidant Activity in Herb Plant Extracts. J. Taiwan Soc. Hort. Sci. 59: 139-152. Chyau CC, CC Chu, SY Chen & PD Duh. (2015). Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. Journal of Functional Foods. 18: 159-170. Cáceres PJ, C Martínez-Villaluenga, L Amigo & J Frias. (2014). Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chemistry. 152: 407-414. Diana M, J Quílez & M Rafecas. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods. 10: 407-420. Dueñas M, T Hernández, I Estrella & D Fernández. (2009). Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chemistry. 117(4): 599-607. Fava G, L Marucci, S Glaser, H Francis, S De Morrow, A Benedetti, D Alvaro, J Venter, C Meininger, T Patel, S Taffetani, M Marzioni, R Summers, R Reichenbach & G Alpini. (2005). Gamma-Aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway. Cancer Res. 65(24): 11437-11446. Fghire R, OI Ali, F Anaya, O Benlhabib, SE Jacobsen & S Wahbi. (2013). Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd). Journal of Biology, Agriculture and Healthcare. Vol.3: No.4. Fordham JR, CE Wells & LH Chen. (1975). Sprouting of seeds and nutrient compositon of seeds and sprouts. Journal of food science. 40. Ghosh D & T Konishi. (2007). Anthocyanins and Anthocyanin-Rich Extracts: Role in Diabetes and Eye Function. Asia Pacific Journal of Clinical Nutrition. 16(2): 200-208. Guo Y, H Chen, Y Song & Z Gu. (2011). Effects of soaking and aeration treatment on γ-aminobutyric acid accumulation in germinated soybean (Glycine max L.). European Food Research and Technology. 232(5): 787-795. Hariadi Y, K Marandon, Y Tian, SE Jacobsen & S Shabala. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany. 62(1): 185-193. Hayakawa K, M Kimura, K Kasaha, K Matsumoto, H Sansawa & Y Yamori. (2004). Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. British Journal of Nutrition. 92(3): 411-417. Hernández-Ledesma B, CC Hsieh & C Martínez-Villaluenga. (2017). Food Bioactive Compounds against Diseases of the 21st Century 2016. BioMed Research International. 2017(1750823): 1-2. Holm G. (1954). Chlorophyll Mutations in Barley. Acta Agriculturae Scandinavica. 4(1): 457-471. Hong YH, YH Huang, YC Liu & PJ Tsai. (2016). Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. Biomed Res Int. 2016(7368797): 1-8. Hsu BY, SW Lin, BS Inbaraj & BH Chen. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI-MS/MS. J Pharm Biomed Anal. 132: 109-116. Kalueff AV & DJ Nutt. (2007). Role of GABA in anxiety and depression. Depression and Anxiety. 24(7): 495-517. Kaukovirta-Norja A, A Wihelmson & K Poutanen. (2004). Germination: a means to improve the functionality of oat. Agricultural and Food Science. 13: 100-112. Kim HJ, I Baburin, S Khom, S Hering & M Hamburger. (2008). HPLC-based activity profiling approach for the discovery of GABAA receptor ligands using an automated two microelectrode voltage clamp assay on Xenopus oocytes. Planta Med. 74(5): 521-526. Kinnersley AM & FJ Turano. (2000). Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Critical Reviews in Plant Sciences. 19(6): 479–509. Koh E, KMS Wimalasiri, AW Chassy & AE Mitchell. (2009). Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition and Analysis. 22(7-8): 637-643. Ksouri R, W Megdiche, A Debez, H Falleh, C Grignon & C Abdelly. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem. 45(3-4): 244-249. Kujala TS, JM Loponen, KD Klika & K Pihlaja. (2000). Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. Journal of Agricultural and Food Chemistry. 48(11): 5338-5342. Lee BJ, JS Kim, YM Kang, JH Lim, YM Kim, MS Lee, MH Jeong, CB Ahn & JY Je. (2010). Antioxidant activity and c-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry. 122: 271-276. Lin YL, CY Cheng, YP Lin, YW Lau, IM Juan & JK Lin. (1998). Hypolipidemic Effect of Green Tea Leaves through Induction of Antioxidant and Phase II Enzymes Including Superoxide Dismutase, Catalase, and Glutathione S-Transferase in Rats. Journal of Agricultural and Food Chemistry. 46(5): 1893-1899. Lintschinger J, N Fuchs, H Moser, R Jäger, T Hlebeina, G Markolin & W Gössler. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods for Human Nutrition. 50(3): 223-237. Mancinelli AL, CPH Yang, P Lindquist, OR Anderson & I Rabino. (1975). Photocontrol of Anthocyanin Synthesis. Plant Physiol. 55: 251-257. Matsuyama A, K Yoshimura, C Shimizu, Y Murano, H Takeuchi & M Ishimoto. (2009). Characterization of glutamate decarboxylase mediating γ-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). Journal of Bioscience and Bioengineering. 107(5): 538-543. Maxwell SRJ. (1995). Prospects for the Use of Antioxidant Therapies. Drugs. 49(3): 345-361. Meyer A, S Eskandari, S Grallath & D Rentsch. (2006). AtGAT1, a High Affinity Transporter for γ-Aminobutyric Acid in Arabidopsis thaliana. The journal of biological chemistry. 281(11): 7197-7204. Mitchell AE, YJ Hong, E Koh, DM Barrett, DE Bryant, RF Denison & S Kaffka. (2007). Ten-Year Comparison of the Influence of Organic and Conventional Crop Management Practices on the Content of Flavonoids in Tomatoes. Journal of Agricultural and Food Chemistry. 55(15): 6154-6159. Nenadis N & M Tsimidou. (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. Journal of the American Oil Chemists' Society. 79(12): 1191. Nestle M. (1998). Broccoli Sprouts in Cancer Prevention. Nutrition Reviews. 56: 127-130. Oh CH & SH Oh. (2004). Effects of Germinated Brown Rice Extracts with Enhanced Levels of GABA on Cancer Cell Proliferation and Apoptosis. J Med Food. 7: 19-23. Oyaizu M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics. 44(6): 307-315. Pajak P, R Socha, D Galkowska, J Roznowski & T Fortuna. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 143: 300-306. Parida A, AB Das & P Das. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology. 45(1): 28-36. Pascale SD, A Maggio, V Fogliano, P Ambrosino & A Ritieni. (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. The Journal of Horticultural Science and Biotechnology. 76(4): 447-453. Paśko P, H Bartoń, P Zagrodzki, S Gorinstein, M Fołta & Z Zachwieja. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry. 115(3): 994-998. Petty F. (1995). GABA and mood disorders: a brief review and hypothesis. Journal of Affective Disorders. 34(4): 275-281. Porra R, WA Thompson & PE Kriedemann. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents : verification of concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta. 975:384-394. Price TV. (1988). Seed Sprout Production for Human Consumption — A Review. Canadian Institute of Food Science and Technology Journal. 21(1): 57-65. Rivero RM, JM Ruiz, PC Garcı́A, LR López-Lefebre, E Sánchez & L Romero. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science. 160(2): 315-321. Sawai Y, Y Yamaguchi, D Miyama & H Yoshitomi. (2001). Cycling treatment of anaerobic and aerobic incubation increases the content of γ-aminobutyric acid in tea shoots. Amino Acids. 20(3): 331-334. Shimada K, K Fujikawa, K Yahara & T Nakamura. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry. 40(6): 945-948. Snedden WA, I Chung, RH Pauls & AW Bown. (1992). Proton/l-Glutamate Symport and the Regulation of Intracellular pH in Isolated Mesophyll Cells. Plant Physiology. 99(2): 665-671. Świeca M, U Gawlik-Dziki, D Kowalczyk & U Złotek. (2012). Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Scientia Horticulturae. 140: 87-95. Thaipong K, U Boonprakob, K Crosby, L Cisneros-Zevallos & D Hawkins Byrne. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis. 19(6-7): 669-675. Tiansawang K, P Luangpituksa, W Varanyanond & C Hansawasdi. (2016). GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology (Campinas). 36(2): 313-321. Tsai PJ, HC Chaung, SM Hsiao, CZ Hong & CL Wang. (2011). The LDL-cholesterol-lowering Effects of Nano-particled Djulis Grains. 2011 International Conference on Bioscience, Biochemistry and Bioinformatics. 5: 218-221. Tsushida T & T Murai. (1987). Conversion of Glutamic Acid toγ-Aminobutyric Acid in Tea Leaves under Anaerobic Conditions. Agricultural and Biological Chemistry. 51(11): 2865-2871. Vijayakumari K & JT Puthur. (2016). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul. 78: 57-67. Wallace W, J Secor & LE Schrader. (1984). Rapid Accumulation of r-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol. 75: 170-175. Wang HF, Z Luo, X Huang, K Yang, S Gao & R Du. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae. 168: 132-137. Wang HF, YS Tsai, ML Lin & ASM Ou. (2006). Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chemistry. 96(4): 648-653. Wang SY & W Zheng. (2001). Effect of Plant Growth Temperature on Antioxidant Capacity in Strawberry. Journal of Agricultural and Food Chemistry. 49(10): 4977-4982. Xing SG, YB Jun, ZW Hau & LY Liang. (2007). Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiology and Biochemistry. 45(8): 560-566. Xu JG & QP Hu. (2014). Changes in γ-aminobutyric acid content and related enzyme activities in Jindou 25 soybean (Glycine max L.) seeds during germination. LWT - Food Science and Technology. 55(1): 341-346. Xu JG, CR Tian, QP Hu, JY Luo, XD Wang & XD Tian. (2009). Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. Journal of Agricultural and Food Chemistry. 57(21): 10392-10398. Yang R, Y Yin, Q Guo & Z Gu. (2013). Purification, properties and cDNA cloning of glutamate decarboxylase in germinated faba bean (Vicia faba L.). Food Chemistry. 138(2–3): 1945-1951. Yin Y, R Yang & Z Gu. (2014). Calcium regulating growth and GABA metabolism pathways in germinating soybean (Glycine max L.) under NaCl stress. European Food Research and Technology. 239(1): 149-156. Yoshiba Y, T Kiyosue, K Nakashima, K Yamaguchi-Shinozaki & K Shinozaki. (1997). Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant and Cell Physiology. 38(10): 1095-1102. Yoshimura M, T Toyoshi, A Sano, T Izumi, T Fujii, C Konishi, S Inai, C Matsukura, N Fukuda, H Ezura & A Obata. (2010). Antihypertensive Effect of a γ-Aminobutyric Acid Rich Tomato Cultivar ‘DG03-9’ in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry. 58(1): 615-619. Zhang Q, J Xiang, L Zhang, X Zhu, J Evers, W Van Der Werf & L Duan. (2014). Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods. 10: 283-291. Zhishen J, T Mengcheng & W Jianming. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64(4): 555-559. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67758 | - |
| dc.description.abstract | 台灣藜 (Chenopodium formosanum Koidz.),傳統稱為紅藜、赤藜,為台灣原生作物,除了當作台灣原住民釀小米酒的酒麴原料以外,本身亦具有豐富的營養價值,高量的膳食纖維及蛋白質,多種人體必需胺基酸如離胺酸、纈胺酸等,以及微量元素鋅、硒及鍺等。機能性成分方面,種子的抗氧化能力十分優秀,其主要來源是甜菜色素及酚類化合物,對於預防人類慢性疾病發生極具潛力,甜菜色素同時也是其果穗色彩豔麗的主因。台灣藜種子含有高量的γ-胺基丁酸 (γ-Aminobutyric Acid, GABA),為一種游離胺基酸,在人類中樞神經系統內是十分重要的抑制性神經傳遞物質,具鎮定、助眠、預防憂鬱及其他如高血壓、糖尿病等疾病的發生。基於以上種種優良效用,台灣藜近年逐漸受到矚目,惟大多數人幾乎只食用種子的部分,有多項研究指出,種子發芽後其機能性成分及抗氧化能力會大幅增加,特別是GABA含量;逆境也是誘導GABA含量增加的因子之一。本研究依序從溫度 (18 ℃、24 ℃及30 ℃)、種植天數 (1~7天) 及鹽份逆境處理 (50、100、150及200 mM) 三個試驗,探討不同環境因子對於台灣藜幼苗機能性成分及抗氧化能力之影響。結果顯示台灣藜幼苗在高溫下,次級代謝物含量最高;低溫時其抗氧化潛力最大,且發現台灣藜幼苗保健功效與總酚含量為正相關。在種植5-6天時,具有最高的次級代謝物含量及抗氧化能力,且所有機能性成分皆與抗氧化能力相關。鹽分逆境試驗結果顯示適度的鹽分濃度可有效增加作物生理表現、機能性成分含量及抗氧化能力,在鹽分逆境下外加鈣離子處理會促進GABA含量增加。總結上述結果,台灣藜幼苗具優良保健功效,未來能應用於芽菜等機能性食品系統之建立。 | zh_TW |
| dc.description.abstract | Djulis (Chenopodium formosanum Koidz.) is an native crop in Taiwan. It has been called “Hung Li” in Chinese because of its bright and red colour. Djulis is famous for being the ingredients of the kavava wine (a local wine). In addition, it contains richness nutritional contents such as high levels of dietary fiber, proteins, people-limited essential amino acids (e.g., lysine and valine) and microelement (e.g., zinc, selenium and germanium). Besides, djulis’s seed is abundant with functional components and great antioxidant activity, from betalains, which is the main source of the color in djulis and phenolic compounds. Djulis is potential for improving or preventing human’s chronic disease. Moreover, djulis’s seed also has γ-aminobutyric acid (GABA) , a free amino acids, which is the major inhibitory neurotransmitter in the mammalian central nervous system. The GABA is helpful for the central nervous system to regulate physiological function such as controlling stress, transquilizer effects, induction of anti-hypertensive, prevention of diabetes, etc. Due to djulis’s extraordinary values, it has become more and more popular. However, most people just eat seed. Studies show that seed germination induce its functional components and antioxidant activity, which means more effective. Especially, the content of GABA also been induced after germination. The stress is also a factor of GABA increasing. The object of this study is to investigate the effects of temperature, seeding days and salt stress treatment on djulis functional components and antioxidants capacities. The study is divided into three parts. First of all, growth temperature treatment with 18, 24 and 30℃. Secondly, seeding days, which ranges from 1-7 days. The final treatment is salt stress, with four concentrations (50, 100, 150 and 200 mM). Results revealed that djulis sprouts in high temperature (30℃) had the highest amounts of secondary metabolites and in low temperature (18℃) had the highest antioxidant capacities. The antioxidants capacities of djulis sprouts in temperature treatment might be constituted by phenolic compound due to significant positive correlation. When seeding days was up to fifth or sixth days, the sprouts turned out to have the highest functional components and antioxidant capacities. At that time, all of the functional components were correlated to djulis sprouts’ antioxidant capacities. The salt stress treatment revealed that moderate salinity could increase physiological performance, the amounts of functional components and antioxidants capacities. Exogenous calcium when application of salt stress could induce GABA content. To sum up, djulis sprouts have great health benefits. The results can be applied to establish the djulis sprout production system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:48:09Z (GMT). No. of bitstreams: 1 ntu-106-R04621112-1.pdf: 3785337 bytes, checksum: 5c7bebbf025b4526d752543e69f63571 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………………………………i
摘要……………………………………………………………………………………...ii Abstract………………………………………………………………………….……...iii 目錄……………………………………………………………………………………...v 圖目錄………………………………………………………………………………….vii 表目錄…………………………………………………………………………………..ix 第一章 前言………………………………………………………………………….…1 一、 台灣藜簡介………………………………………………………………….1 二、 機能性成分與抗氧化力、保健功效之關聯……………………………….2 三、 影響機能性成分之因子…………………………………………………….5 四、 芽菜保健功效……………………………………………………………….9 五、 研究目的.……………………………………………………………………9 第二章 材料與方法…………………………………………………………………...11 一、試驗材料及處理…………………………………………………………......11 (一) 試驗材料及流程……………………………………………….………....11 (二) 試驗處理……………………………………………………………….…11 (三) 種植方法………………………………………………………………….13 (四) 材料取樣………………………………………………………………….13 二、分析項目………………………………………………………….……….…13 (一) 次級代謝物含量測定…………………………………………………….13 (二) 胺基丁酸含量測定……………………………………………………….15 (三) 抗氧化能力測定………………………………………………………….16 (四) 統計分析………………………………………………………………….16 第三章 結果…………………………………………………………………………...18 一、不同溫度之台灣藜幼苗次級代謝物及抗氧化能力結果……………….…18 二、不同種植天數之台灣藜幼苗次級代謝物、GABA及抗氧化能力結果.…18 三、不同鹽分逆境之台灣藜幼苗次級代謝物、GABA及抗氧化能力結果….19 四、相關性分析………………………………………………………………….21 第四章 討論……………………………………………………………………….......22 一、溫度對機能性成分及抗氧化能力之影響………………………………….22 二、發芽及種植天數對機能性成分及抗氧化能力之影響…………………….23 三、鹽分逆境對機能性成分及抗氧化能力之影響…………………………….25 第五章 結論與展望…………………………………………………………………...27 第六章 參考文獻……………………………………………………………………...28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 台灣藜 | zh_TW |
| dc.subject | 幼苗 | zh_TW |
| dc.subject | 抗氧化 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 鹽分 | zh_TW |
| dc.subject | γ-胺基丁酸 (GABA) | zh_TW |
| dc.subject | Djulis | en |
| dc.subject | sprout | en |
| dc.subject | antioxidant | en |
| dc.subject | temperature | en |
| dc.subject | salt stress | en |
| dc.subject | γ-aminobutyric acid (GABA) | en |
| dc.title | 不同生長條件對台灣藜幼苗機能性成分之影響 | zh_TW |
| dc.title | Effect of growth condition on functional components of djulis (Chenopodium formosanum Koidz.) sprout | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊棋明 | |
| dc.contributor.oralexamcommittee | 許明晃,黃盟元 | |
| dc.subject.keyword | 台灣藜,幼苗,抗氧化,溫度,鹽分,γ-胺基丁酸 (GABA), | zh_TW |
| dc.subject.keyword | Djulis,sprout,antioxidant,temperature,salt stress,γ-aminobutyric acid (GABA), | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201702000 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
