請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Wei-Heng Liu | en |
| dc.contributor.author | 劉衛衡 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:47:25Z | - |
| dc.date.available | 2022-07-28 | |
| dc.date.copyright | 2017-07-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | [1] C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y. Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High Modulation Bandwidth of a Light-emitting Diode with Surface Plasmon Coupling,” IEEE Transactions on Electron Dev. 63, pp. 3989~3995 (2016).
[2] A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002). [3] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [4] G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007). [5] Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(S4), A914–A929 (2011). [6] J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface Plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007). [7] G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009). [8] Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102(16), 161103 (2013). [9] Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30(10), 2599–2606 (2013). [10] C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011). [11] C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013). [12] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008). [13] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007). [14] C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010). [15] K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008). [16] K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010). [17] H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013). [18] C. Y. Cho, J. J. Kim, S. J. Lee, S. H. Hong, K. J. Lee, S. Y. Yim, and S. J. Park, “Enhanced emission efficiency of GaN-based flip-chip light-emitting diodes by surface plasmons in silver disks,” Appl. Phys. Express 5(12), 122103 (2012). [19] M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008). [20] C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98(5), 051106 (2011). [21] C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface Plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011). [22] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008). [23] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93(12), 121107 (2008). [24] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett. 94(4), 041103 (2009). [25] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, “Measurement of electron overflow in 450 nm InGaN light-emitting diode structures,” Appl. Phys. Lett. 94(6), 061116 (2009). [26] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Appl. Phys. Lett. 99(25), 251115 (2011). [27] D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100(8), 081106 (2012). [28] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012). [29] G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carriertransport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett. 100(16), 161106 (2012). [30] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19), 191109 (2009). [31] W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011). [32] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011). [33] M. Brendel, A. Kruse, H. Jönen, L. Hoffmann, H. Bremers, U. Rossow, and A. Hangleiter, “Auger recombination in GaInN/GaN quantum well laser structures,” Appl. Phys. Lett. 99(3), 031106 (2011). [34] F. Bertazzi, M. Goano, and E. Bellotti, “Numerical analysis of indirect Auger transitions in InGaN,” Appl. Phys. Lett. 101(1), 011111 (2012). [35] E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101(23), 231107 (2012). [36] R. Vaxenburg, E. Lifshitz, and A. L. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013). [37] F. Bertazzi, X. Zhou, M. Goano, G. Ghione, and E. Bellotti, “Auger recombination in InGaN/GaN quantum wells: A full-Brillouin-zone study,” Appl. Phys. Lett. 103(8), 081106 (2013). [38] C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22(S3), A842-A856 (2014). [39] C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105(10), 101106 (2014). [40] Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22(S1), A155-A166 (2014). [41] Y. C. Lu, Y. S. Chen, F. J. Tsai, J. Y. Wang, C. H. Lin, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009). [42] C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17(16), 14186-14198 (2009). [43] S. Zhang, S. Watson, J. J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs,” J. Lightwave Technol. 31(8), 1211-1216 (2013). [44] P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014). [45] C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Dev. Lett. 34(2), 611-613 (2013). [46] S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11-R13 (2014). [47] S. Strite and H. Morkoç, “GaN, AIN, and InN: A review,” J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. 10, 1237–1266 (1992). [48] Y. K. Kuo, J. Y. Chang, and M. C. Tsai, 'Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,' Opt. Lett. 35, 3285-3287 (2010). [49] S. Choi, M. H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J. H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Efficiency droop due to electron spill-over and limited hole injection in III−nitride visible lightemitting diodes employing lattice-matched InAlN electron blocking layers,” Appl. Phys. Lett. 101(16), 161110 (2012). [50] K. Köhler, T. Stephan, A. Perona,J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97, 10 (2005). [51] J. Zhang, X.J. Zhuo, D.W. Li, Z.W. Ren, H.X. Yi, J.H. Tong, X.F. Wang, X. Chen, B.J. Zhao, S.T. Li, “Efficiency-droop reduction in blue InGaN light-emitting diodes with low temperature,” Superlattices Microst 73, 145 (2014). [52] H. Y. Ryu and J. M. Lee, “Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers,” Appl. Phys. Lett. 102, 18 (2013). [53] C. Y. Su, C. G. Tu, W. H. Liu, C. H. Lin, Y. F. Yao, H. T. Chen, Y. R. Wu, Y. W. Kiang, and C. C. Yang, “Enhancing the hole injection efficiency of a light-emitting diode by increasing Mg doping in the p-AlGaN electron blocking layer,” IEEE Transactions on Electron Dev. 64(8), 3226~3233 (2017). [54] C. Y. Chen, C. Hsieh, C. H. Liao, W. L. Chung, H. T. Chen, W. Cao, W. M. Chang, H. S. Chen, Y. F. Yao, S. Y. Ting, Y. W. Kiang, C. C. Yang, and X. Hu, “Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode,” Opt. Express 20(10), 11321-11335 (2012). [55] Y. T. Moon, Y. Fu, F. Yun, S. Dogan, M. Mikkelson, D. Johnstone, and H. Morkoç, “A study of GaN regrowth on the micro-facetted GaN template formed by in-situ thermal etching,” Phys. Stat. 202(5), 718-721 (2005). [56] C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161, (2015). [57] C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014). [58] J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346-1348 (2010). [59] J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30, 61-67 (2012). [60] J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photon. J. 4, 1520-1529 (2012). [61] S. Zhang, S. Watson, J. J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31, 1211-1216 (2013). [62] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3972-3974 (2013). [63] C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24, pp. 20281-20286 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67745 | - |
| dc.description.abstract | 我們首先展示具有p-型層厚度僅38奈米的高效率發光二極體,藉由預先通入鎂的方式,我們可以增加p-型氮化鋁鎵電子阻擋層內的鎂摻雜濃度及電洞農度,由此發光二極體電洞的注入效率能夠大幅度提升。基於這項技術,在p-型層極薄的情況下仍能維持發光二極體的高效率表現。然後,我們比較不同p-型層厚度之發光二極體的表面電漿子耦合效應,包括內部量子效率的增加、發光強度的增強、高效率滑落效應的降低以及調製頻寬的提升。隨著發光二極體的p-型層變薄,這些有益的效應會更加強烈。然而,這些效應隨著p-型層厚度的變化幅度不盡相同。在元件半徑為10微米的條件下,我們於c-平面氮化鎵系之發光二極體實現605.6 MHz的高調製頻寬。 | zh_TW |
| dc.description.abstract | The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is first demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained with a thin p-type layer. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase of output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness vary. With a circular mesa size of 10 μm in radius, we achieve the high modulation bandwidth of 605.6 MHz among c-plane GaN-based LEDs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:47:25Z (GMT). No. of bitstreams: 1 ntu-106-R03941088-1.pdf: 2053254 bytes, checksum: 6d53e258dd1dceaf6d290b0504554fb3 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Content v List of Figure vii List of Table ix Chapter 1 Introduction 1 1.1 Surface plasmon coupled LED 1 1.2 Thin p-type-layer LED 6 1.3 Research motivations 9 1.4 Thesis organization 10 Chapter 2 Sample structures and fabrication procedures 12 2.1 Device growth and sample structures 12 2.2 Surface plasmon resonance behavior 13 2.3 LED fabrication 15 Chapter 3 Results and discussions 24 3.1 Basic performances of LEDs 24 3.2 Modulation bandwidths of LEDs 26 3.3 Discussions 27 Chapter 4 Conclusions 38 References 39 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | light emitting diode | en |
| dc.subject | nanoparticle | en |
| dc.subject | surface plasmon | en |
| dc.subject | GaN | en |
| dc.title | 具有表面銀奈米顆粒薄p-型層綠光發光二極體的表面電漿子耦合效應 | zh_TW |
| dc.title | Surface Plasmon Coupling Effects of Thin p-type-layer Green Light-emitting Diodes with Surface Silver | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉,黃建璋,陳奕君,吳肇欣 | |
| dc.subject.keyword | 表面電漿子,發光二極體,氮化鎵,奈米顆粒, | zh_TW |
| dc.subject.keyword | surface plasmon,light emitting diode,GaN,nanoparticle, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201702012 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
