請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李篤中 | |
| dc.contributor.author | Yun-Chen Lee | en |
| dc.contributor.author | 李昀澄 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:47:21Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-25 | |
| dc.identifier.citation | [1] K. S. W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and applied chemistry, 1985. 57(4): p. 603-619
[2] H.F. Leach, Application of molecular sieve zeolites to catalysis. Annual reports on the progress of chemistry, section A: general physical and inorganic chemistry 1971. 10 : p.195-219 [3] M. Moliner, Y. Roman-Leshkov, M.E. Davis, Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of national academy of sciences of the united state of america, 2010. 107(14): p. 6164-6168. [4] K.S. Walton, M.B. Abney, M. Douglas LeVan, CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and mesoporous materials, 2006. 91(1-3): p. 78-84. [5] Z. Xu, I. Michos, Z. Cao, W. Jing, X. Gu, K. Hinkle, S. Murad, J. Dong, Proton-selective ion transport in ZSM-5 zeolite membrane. The Journal of physical chemistry C, 2016. 120(46): p. 26386-26392. [6] M.E. Davis, Ordered porous materials for emerging applications. Nature, 2002. 417 : p. 813-821 [7] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid template mechanism. Nature, 1992. 359 : p. 710-712 [8] N. Linares, M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. Garcia-Martinez, Mesoporous materials for clean energy technologies. Chemical society review, 2014. 43(22): p. 7681-7717. [9] L.T. Gibson, Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical society review, 2014. 43(15): p. 5163-5172. [10] J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte chemie international edition, 1999. 38 : p. 57-77 [11] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998. 279 : p. 548-552 [12] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the american chemical society, 1998. 120 : p. 6024-6036 [13] V. Alfredsson, H. Wennerstrom, The dynamic association processes leading from a silica precursor to a mesoporous SBA-15 material. Accounts for chemical research, 2015. 48(7): p. 1891-1900. [14] S.W. Song, K. Hidajat, S. Kawi, Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir, 2005. 21 : p. 9568-9575 [15] Q. Wei, Z. Nie, Y. Hao, Z. Chen, J. Zou, W. Wang, Direct synthesis of thiol-ligands-functionalized SBA-15: effect of 3mercaptopropyltrimethoxysilane concentration on pore structure. Materials letters, 2005. 59(28): p. 3611-3615. [16] H. Yoshitake, E. Koiso, H. Horie, H. Yoshimura, Polyamine-functionalized mesoporous silicas: preparation, structural analysis and oxyanion adsorption. Microporous and mesoporous materials, 2005. 85(1-2): p. 183-194. [17] G.L. Athens, R.M. Shayib, B.F. Chmelka, Functionalization of mesostructured inorganic–organic and porous inorganic materials. Current opinion in colloid & interface science, 2009. 14(4): p. 281-292. [18] C. Jo, J. Jung, R. Ryoo, Mesopore expansion of surfactant-directed nanomorphic zeolites with trimethylbenzene. Microporous and mesoporous materials, 2014. 194: p. 83-89. [19] L. Gao, Y. Wang, J. Wang, L. Huang, L. Shi, X. Fan, Z. Zou, T. Yu, M. Zhu, Z. Li, A novel ZnII-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous SBA-15. Inorganic chemistry, 2005. 45 : p. 6844-6850 [20] F. Marlow, M.D. Mcgehee, D. Zhao, B.F. Chmelka, G.D. Stucky, Doped mesoporous silica fibers: a new laser material. Advanced material, 1999. 11(8) : p. 632-636 [21] J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and mesoporous materials, 2004. 73(3): p. 121-128. [22] A. Vinu, V. Murugesan, M. Hartmann, Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: influence of pH and aluminum incorporation. The jounal of physical chemistry B, 2004. 108 : p.7323-7330 [23] A.S.M. Chong, X.S. Zhao, Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catalysis today, 2004. 93-95: p. 293-299. [24] S. Hudson, J. Cooney, B. K. Hodnett, E. Magner, Chloroperoxidase on periodic mesoporous organosilanes: immobilization and reuse. Chemical material, 2007. 19 : p. 2049-2055 [25] S.B. Hartono, S.Z. Qiao, J. Liu, K. Jack, B.P. Ladewig, Z. Hao, G.Q.M. Lu, Functionalized mesoporous silica with very large pores for cellulase immobilization. The journal of physical chemistry C, 2010. 114 : p. 8353-8362 [26] S. Gao, Y. Wang, X. Diao, G. Luo, Y. Dai, Effect of pore diameter and cross-linking method on the immobilization efficiency of candida rugosa lipase in SBA-15. Bioresource technology, 2010. 101(11): p. 3830-3837. [27] Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F.S. Xiao, pH-Responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chemical material, 2005. 17 : p. 5999-6003 [28] A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J. Perez-Pariente, I. Izquierdo-Barba, M. Vallet-Regi, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. The journal of control release, 2004. 97(1): p. 125-132. [29] J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascon, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. The journal of hazardrous material, 2009. 163(1): p. 213-221. [30] C.H. Huang, K.P. Chang, H.D. Ou, Y.C. Chiang, C.F. Wang, Adsorption of cationic dyes onto mesoporous silica. Microporous and mesoporous materials, 2011. 141(1-3): p. 102-109. [31] M. Guan, W. Liu, Y. Shao, H. Huang, H. Zhang, Preparation, characterization and adsorption properties studies of 3-(methacryloyloxy)propyltrimethoxysilane modified and polymerized sol–gel mesoporous SBA-15 silica molecular sieves. Microporous and mesoporous materials, 2009. 123(1-3): p. 193-201. [32] M. Anbia, S. Amirmahmoodi, Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent. Scientia Iranica, 2011. 18(3): p. 446-452. [33] M. Hartmann, A. Vinu, Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption. Langmuir, 2002. 18 : p. 8010-8016 [34] D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chemical material, 2000. 12 : p. 275-279 [35] Y. Zhu, J. Shi, Y. Li, H. Chen, W. Shen, X. Dong, Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous and mesoporous materials, 2005. 85(1-2): p. 75-81. [36] T. Yamada, H. Zhou, H. Uchida, I. Honma, T. Katsube, Experimental and theoretical NOx physisorption analyses of mesoporous film (SBA-15 and SBA-16) constructed surface photo voltage (SPV) sensor. The journal of physical chemistry B, 2004. 108 : p. 13341-13346 [37] C. Chen, S. Yang, W. Ahn, R. Ryoo, Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical communications, 2009. 24 : p. 3627-3629. [38] M. Liqun, Z. Shangru, L. Na, Z. Bin, A. Qingda, Controlled fabrication and application of platelet SBA-15 materials. Process in chemistry, 2012. 24(4) : p. 471-482 [39] H. Zhang, J. Sun, D. Ma, X. Bao, A. Klein-Hoffmann, G. Weinberg, D. Su, R. Schlog, Unusual mesoporous SBA-15 with parallel channels running along the short axis. The journal of american chemistry society, 2004. 126 : p. 7440-7441 [40] S. Chen, C. Tang, W. Chuang, J. Lee, Y. Tsai, J.C.C. Chan, C. Lin, Y. Liu, S. Cheng, A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chemical material, 2008. 20 : p. 3906-3916 [41] G. Ji, G. Zhu, X. Wang, Y. Wei, J. Yuan, C. Gao, Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Separation and purification technology, 2017. 174: p. 455-465. [42] Y. Wei, Y. Li, Y. Tan, Z. Wu, L. Pan, Y. Liu, Short-channeled mesoporous Zr–Al-SBA-15 as a highly efficient catalyst for hydroxyalkylation of phenol with formaldehyde to bisphenol F. Chemical engineering journal, 2016. 298: p. 271-280. [43] M. Ferdousi, M. Pazouki, F.A. Hessari, M. Kazemzad, Simultaneous control of rod length and pore diameter of SBA-15 for PPL loading. Journal of porous materials, 2015. 23(2): p. 453-463. [44] S. Chen, L. Attanatho, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, C. Kumpidet, P. Somwonhsa, S. Lao-ubol, Upgrading of palm biodiesel fuel over supported palladium catalysts. Comptes rendus chimie, 2016. 19(10): p. 1166-1173. [45] E.M. Johansson, J.M. Córdoba, M. Odén, The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15. Microporous and mesoporous materials, 2010. 133(1-3): p. 66-74. [46] S.M.L. Santos, J.A. Cecilla, E. Vilarrasa-Garcia, I.J. Silva-Junior, E. Rodriguez-Castellon, D.C.S. Azevedo, The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption. Microporous and mesoporous materials, 2016. 232: p. 53-64. [47] Y. Fang, L. Sheng, G. Juan, W. Fang, W. Fang, L. Wang, Synthesis and adsorption properties of amino functionalized HzNZr-Ce-SBA-15 mesoporous materials with short mesochannels. Acta physico-chimica sinica, 2010. 26(6) : p. 1711-1716 [48] S. Chen, H. Tsai, W. Chuang, J. Lee, C. Tang, C. Lin, S. Cheng, Direct preparation of thermally stable Sn-incorporated SBA-15 mesoporous materials in the self-generated acidic environment. The journal of physical chemistry, 2009. 113 : p. 15226-15238 [49] T. Tao, X. Li, Y. Zhao, Y. Xu, D. Wu, Y. Sun, Synthesis of amine /methyl bifunctionalized SBA-15 with hexagonal platelet morphology and its application in Bilirubin adsorption. Chemical journal of chinese universities, 2011. 32(3) : p. 772-777 [50] K. Ariga, A.V., M. Miyahara, J.P. Hill, and T. Mori, One-Pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. The journal of american chemical society, 2007. 129 : p. 11022-11023 [51] L.G. Miller, Selected clinical considerations focusing on known or potential drug-herb interactions. Archives of international medicine, 1998. 158 : p. 2200-2211 [52] J. Gao, H. Lei, Z. Han, Q. Shi, Y. Chen, Y. Jiang, Dopamine functionalized tannic-acid-templated mesoporous silica nanoparticles as a new sorbent for the efficient removal of Cu2+ from aqueous solution. Scientific reports, 2017. 7 : p. 45215. [53] S.A. Aromal, D. Philip, Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis. Physica E: low-dimensional systems and nanostructures, 2012. 44(7-8) : p. 1692-1696. [54] F. Xu, B. Weng, R. Gilkerson, L.A. Materson, K. Lozano, Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydrate polymer, 2015. 115 : p. 16-24. [55] J.H. An, S. Dultz, Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Applied clay science, 2007. 36(4): p. 256-264. [56] A. Buso, L. Balbo., M. Giomo, Electrochemical removal of tannins from aqueous solutions. Industrial and engineering chemistry research, 2000. 39 : p. 494-499 [57] Y. Zhou, X. Xing, Z. Liu, L. Cui, A. Yu, Q. Feng, H. Yang, Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater. Chemosphere, 2008. 72(2) : p. 290-298. [58] P. Canizares, A. Perez, R. Camarillo, J. Llanos, Tannic acid removal from aqueous effluents using micellar enhanced ultrafiltration at pilot scale. Desalination, 2006. 200(1-3) : p. 310-312. [59] W.W. Li, X.D. Li, K.M. Zeng, Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochemical engineering journal, 2009. 43(2) : p. 142-148. [60] J. Wang, S. Zheng, J. Liu, Z. Xu, Tannic acid adsorption on amino-functionalized magnetic mesoporous silica. Chemical engineering journal, 2010. 165(1) : p. 10-16. [61] T.S. Anirudhan, M. Ramachandran, Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay. The journal of colloid interface science, 2006. 299(1) : p. 116-124. [62] J. Rivera-Utrilla, C. Moreno-Castilla, E. Utrera-Hldalgo, F. Carrasco-Marln, Removal of tank acid from aqueous solutions by activated carbons. The chemical engineering journal, 1993. 52 : p. 37-39 [63] Y. Xu, G. Zhou, C. Wu, T. Li, H. Song, Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15. Solid state sciences, 2011. 13(5) : p. 867-874. [64] H. Song, R. He, K. Wang, J. Ruan, C. Bao, N. Li, J. Ji, D. Cui, Anti-HIF-1alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials, 2010. 31(8) : p. 2302-2312. [65] M. Pudukudy, Z. Yaakob, Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance. Superlattices and microstructures, 2013. 63: p. 47-57. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67744 | - |
| dc.description.abstract | 介孔物質為孔徑在2至50 奈米之間的多孔性材料,並在分子的儲存、催化、吸附等有良好的研究成果。其中,SBA-15 因為其夠高的表面積、可調節的孔徑以及聚熱穩定性而成為熱門的研究材料之一。SBA-15 隨著製程的改變會展現不同的外型像是纖維狀、圓球狀、囊包狀或片板狀等。而近年來,片板狀的SBA-15 因為其短孔道而受到密切的注意,因此許多合成短孔道SBA-15的方式因而誕生。而在所有方法之中,以鋯為添加劑為最多人所使用的方法。
在絕大部分以鋯合成短孔道SBA-15的研究裡,都是以氯氧化鋯作為鋯源,因此在本實驗裡,嘗試著以氯化鋯作為另一種鋯來源合成片板狀短孔道之SBA-15介孔材料,並以比表面積分析儀、掃描式電子顯微鏡、穿透式電子顯微鏡等比較此材料與原製程(以氯氧化鋯為鋯源)在表面積、孔徑以及外型等性質。在結果中,可以發現兩者在這些性質上大似相近,因此可以得到陰離子的改變對於材料的合成並不會造成太大的影響,所以使用氯化鋯合成短孔道SBA-15 是可行的。 接著,氯化鋯合成之短孔道SBA-15在胺基化之後,則試著用於單寧酸的吸附。從吸附實驗中,可得知當溶液初始濃度為150 ppm時,平衡的吸附量為416.8 mg/g,較殼聚醣或多孔性黏土的效果好。此外,為了探討分子在孔道間的移動狀況,將胺基在不同製程下SBA-15上的負載量經由熱重分析得知後並進行討論,從結果中,可以看出短孔道中分子擴散的速率應較普通長孔道來的快,且以單位面積來說,短孔道對胺基的負載量也比長孔道來的高。 | zh_TW |
| dc.description.abstract | Mesoporous is a kind of material with pore diameter between 2 and 50 nanometers which is widely used in storage, catalytic reaction and adsorption. Among many kinds of mesoporous materials, SBA-15 is famous for its high surface area, tunable pore size and high heat stability. With different synthesis condition, different morphology of SBA-15 would be produced like fiber, sphere, vesicular or plate. Recently, SBA-15 with platelet structure is getting more and more popular because of its short channel. So there are more and more methods developed for production of short channel SBA-15, and in these methods, the widely used one is the addition of zirconium.
In most of the research related to short channel SBA-15, zirconyl oxychloride is used as zirconium source. So, in this experiment, short channel SBA-15 was tried with another zirconium source, zirconium chloride. In order to check whether the product shows similar properties with the original one made by adding zirconyl oxychloride, BET, SEM and TEM was used to know the properties like surface area, pore size or morphology of these two products. From these data, we can see that the properties of these two products are similar, which means that the change of anion would not cause effect. So, production of short channel SBA-15 with zirconium chloride is feasible. And then, after modification of amine, the modified short channel SBA-15 was used for adsorption of tannic acid. And from the results, we can see that when the concentration of tannic acid before adsorption is 150 ppm, the equilibrium loading amount of tannic acid would be 416.8 mg/g, and it is higher than chitosan or clay as adsorbent. Besides, in order to figure out the molecular diffusion condition inside the channels, the amount of amine loaded on the surface was measured by thermal gravity analysis for discussion. From results, we can know that the diffusion rate of molecules inside short channel is faster than inside long channels, and also, higher loading capacity per unit surface area was also observed in platelet SBA-15. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:47:21Z (GMT). No. of bitstreams: 1 ntu-106-R04524039-1.pdf: 3544530 bytes, checksum: 094db986d0b44959ea4b9f3cdad3e895 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
口試委員會審訂書........................................................................................................# 摘要 I Abstract II List of figure VII List of table IX Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Introduction of porous materials 3 2.2 SBA-15 6 2.2.1 Introduction of SBA-15 6 2.2.2 Mechanism and morphology of SBA-15 7 2.2.3 Modification of SBA-15 9 2.2.4 Tuning pore size of SBA-15 10 2.2.5 Application of SBA-15 12 2.2.6 Short channel / platelet SBA-15 14 2.3 Tannic acid 17 Chapter 3. Material and method 19 3.1 Material 19 3.2 Synthesis of SBA-15/Short channel SBA-15 20 3.2.1 Synthesis of SBA-15 20 3.2.2 Synthesis of short channel SBA-15 using zirconyl oxychloride 21 3.2.3 Synthesis of short channel SBA-15 using zirconium chloride 21 3.2.4 Synthesis of amine-functionalized SBA-15 21 3.3 Characterization of SBA-15 products 22 3.3.1 Nitrogen adsorption-desorption isotherm 22 3.3.2 Scanning electron microscopy (SEM) 25 3.3.3 Transmission electron microscope (TEM) 26 3.3.4 Fourier transform infrared spectroscopy (FTIR) 26 3.3.5 Thermal gravity analysis and Differential thermal analysis (TGA-DTA) 27 3.3.6 UV-Vis spectrophotometer 27 3.4 Determination of the amount of amine loaded on SBA-15 28 3.5 Adsorption of tannic acid 28 Chapter 4. Result and discussion 30 4.1 Morphology of SBA-15 30 4.1.1 SEM picture of the SBA-15 products 30 4.1.2 TEM pictures of the SBA-15 products 34 4.2 Pore size and Surface area of SBA-15 38 4.2.1 Isotherm plot 38 4.2.2 Surface area and pore size of the product 46 4.3 FTIR result of the products 55 4.3.1 Removal of the surfactant 55 4.3.2 Modification of amine group 59 4.4 Amount of amine loading on SBA-15 products 63 4.5 Adsorption of tannic acid 72 4.5.1 Result of adsorption 72 4.5.2 Langmuir adsorption isotherm model 75 4.5.3 Freundlich adsorption isotherm model 77 4.5.4 Temkin adsorption isotherm model 79 Chapter 5. Conclusion 82 Reference 84 | |
| dc.language.iso | en | |
| dc.subject | 片板狀SBA-15 | zh_TW |
| dc.subject | 氯化鋯 | zh_TW |
| dc.subject | 胺基修飾 | zh_TW |
| dc.subject | 單寧酸 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | platelet SBA-15 | en |
| dc.subject | zirconium chloride | en |
| dc.subject | amine-modified | en |
| dc.subject | tannic acid | en |
| dc.subject | adsorption | en |
| dc.title | 以四氯化鋯為鋯源合成之短孔道SBA-15及其吸附相關研究 | zh_TW |
| dc.title | Synthesis of zirconium chloride involved short channel SBA-15 and its application in adsorption | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃志彬,鄭智嘉,Christopher Whiteley | |
| dc.subject.keyword | 片板狀SBA-15,氯化鋯,胺基修飾,單寧酸,吸附, | zh_TW |
| dc.subject.keyword | platelet SBA-15,zirconium chloride,amine-modified,tannic acid,adsorption, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201701878 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
