請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉力瑜(Li-Yu Liu) | |
| dc.contributor.author | Po-Chih Shen | en |
| dc.contributor.author | 沈柏志 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:47:18Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947.
Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523. Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185. Borate BR, Chesler EJ, Langston MA, et al (2009) Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Res Notes 2:240. Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951. Campain A, Yang YH (2010) Comparison study of microarray meta-analysis methods. BMC Bioinformatics 11:408. Du Z, Zhou X, Ling Y, et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453. Golub GH, Van Loan CF (1996) Matrix computations (3rd Ed.). Johns Hopkins University Press, Baltimore, MD, USA Hahn A, Kilian J, Mohrholz A, et al (2013) Plant core environmental stress response genes are systemically coordinated during abiotic stresses. Int J Mol Sci 14:7617. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417. Hsiao Y-C, Liu L-YD (2016) A stepwise approach of finding dependent variables via coefficient of intrinsic dependence. J Comput Biol 23:42. Hsing T, Liu L, Brun M, Dougherty E (2005) The coefficient of intrinsic dependence (feature selection using el CID). Pattern Recognit 38:623. Huala E, Dickerman AW, Garcia-Hernandez M, et al (2001) The Arabidopsis Information Resource (TAIR): A comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102. Irizarry RA, Bolstad BM, Collin F, et al (2003a) Summaries of affymetrix genechip probe level data. Nucleic Acids Res 31:e15. Irizarry RA, Hobbs B, Collin F, et al (2003b) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat Oxf Engl 4:249. Ji H, Pardo JM, Batelli G, et al (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275. Kaever A, Landesfeind M, Feussner K, et al (2014) Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLOS ONE 9:e89297. Kaever A, Landesfeind M, Feussner K, et al (2015) MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics 11:764. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. Liu L-Y (2005) Coefficient of intrinsic dependence: a new measure of association. Thesis Liu L-Y, Chen C-Y, Chen M-J, et al (2009) Statistical identification of gene association by CID in application of constructing ER regulatory network. BMC Bioinformatics 10:85. Liu L-YD, Chang L-Y, Kuo W-H, et al (2012) In silico prediction for regulation of transcription factors on their shared target genes indicates relevant clinical implications in a breast cancer population. Cancer Inform 11:113. Mantione KJ, Kream RM, Kuzelova H, et al (2014) Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med Sci Monit Basic Res 20:138. Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170. Park C-J, Seo Y-S (2015) Heat Shock Proteins: A review of the molecular chaperones for plant immunity. Plant Pathol J 31:323. Pavlopoulos GA, Secrier M, Moschopoulos CN, et al (2011) Using graph theory to analyze biological networks. BioData Min 4:1. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2:559. Priest HD, Fox SE, Rowley ER, et al (2014) Analysis of global gene expression in brachypodium distachyon reveals extensive network plasticity in response to abiotic stress. PLOS ONE 9:e87499. Ramasamy A, Mondry A, Holmes CC, Altman DG (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLOS Med 5:e184. Rasmussen S, Barah P, Suarez-Rodriguez MC, et al (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783. Raza K, Parveen R (2013) Reconstruction of gene regulatory network of colon cancer using information theoretic approach. arXiv:1307.3712v1 Rest JS, Wilkins O, Yuan W, et al (2016) Meta-analysis and meta-regression of transcriptomic responses to water stress in Arabidopsis. Plant J Cell Mol Biol 85:548. Ritchie ME, Phipson B, Wu D, et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188:11. Sachs M M, Ho T-HD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37:363. Shannon P, Markiel A, Ozier O, et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328. Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:6. Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1. Tsai C-A, Liu L-Y (2013) Identifying gene set association enrichment using the coefficient of intrinsic dependence. PLOS ONE 8:e58851. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781. Yan W, Kang MS (2002) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67743 | - |
| dc.description.abstract | 在建立模型或決策時,找出關鍵特徵變數是很重要的一環。本質相關係數 (coefficient of intrinsic dependence, CID) 是一個關聯統計量,可以用來度量變數間的關聯性。它在一些找尋相關性的應用上有很好的表現,例如用來建立基因調控網路或是測量兩組變數的關聯性。為了更方便給其他人使用,例如生物學家,在本研究中,開發一個R套件(cidr),讓大家可以更容易且方便的進行本質相關係數計算。本研究也整合加權基因共表現網絡分析 (weighted gene co-expression network analysis, WGCNA) 與本質相關係數 (CID),應用在找尋阿拉伯芥非生物逆境專一 (abiotic stress-specific) 之基因群,並利用熱圖 (heatmap) 與雙軸圖 (biplot) 來進行視覺化呈現。在低溫、高溫、鹽害逆境下,分別找到2個低溫、3個高溫、5個鹽害逆境專一基因群,提供了解生物交互影響過程的初步參考。此外,我們應用了子本質相關係數 (subCID) 更詳細的在基因群中找尋逆境專一基因,透過各基因 subCID 數值矩陣製作雙軸圖,有助於區分出各個逆境專一的基因。希望本論文開發之 cidr套件以及論文中描述的方法,有助於揭示隱藏在大規模基因體數據中的相關生物機制。 | zh_TW |
| dc.description.abstract | Feature selection plays an important rule for modeling or decision making. The coefficient of intrinsic dependence (CID) is an association measure which can be used to measure the relationship among the variables. It had been applied to construct gene regulatory networks and to measure the relationships between two groups of one- or multiple-dimensional variables. For the convenience of potential users to obtain the CID values, we had developed an R package, cidr, for the computation and the visualization of CID. In Chapter 3, we also incorporated the weighted gene co-expression network analysis (WGCNA) and CID to find the abiotic stress-specific gene module in Arabidopsis and the results had be summarized using the heatmaps and biplots. Two cold stress-specific, three heat stress-specific, and five salt stress-specific gene modules were identified, respectively. The results may provide hints about the underlying biological processes. In Chapter 4, we further adopted the subCID values to identify the stress-specific genes in a gene module. The biplot derived from the subCID matrix assisted to visualize the stress-specific genes. In conclusion, we hope the cidr package as well as the methodologies described in the dissertation can assist to reveal the biological insights hidden in massive genomic-level datasets. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:47:18Z (GMT). No. of bitstreams: 1 ntu-106-D98621202-1.pdf: 3646342 bytes, checksum: 8e1f2d55bec1df9556263ada1a736385 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 cidr: AN R PACKAGE OF CID 4 2.1 Introduction 4 2.2 Materials and Methods 6 2.2.1 The coefficient of intrinsic dependence (CID) 6 2.2.2 Microarray expression data for Demonstration 8 2.2.3 To construct and visualize the GRN via the cidr 9 2.3 Results 13 2.3.1 Constructing gene co-expression networks 13 2.3.2 Gene set association analysis (GSAA) 18 2.4 Discussion 21 2.4.1 Estimated methods under the 1x1y condition 21 2.4.2 Assumption of cidnet’s inputs 22 2.4.3 The occasions for different plot functions 23 2.4.4 Future works 24 2.5 Conclusion 24 CHAPTER 3 ABIOTIC STRESS-SPECIFIC GENE MODULES FOR ARABIDOPSIS 26 3.1 Introduction 26 3.2 Materials and Methods 32 3.3 Results 37 3.4 Discussion 41 3.5 Conclusion 49 CHAPTER 4 APPLICATION OF SUBCID FOR CHOOSING STRESS-SPECIFIC GENES 51 4.1 Introduction 51 4.2 Materials and Methods 52 4.3 Results 55 4.4 Discussion 63 4.5 Conclusion 65 CHAPTER 5 CONCLUSION 66 REFERENCE 69 APPENDIX 76 Supplementary Figures 76 Supplementary Tables 77 List of abbreviations used 80 | |
| dc.language.iso | en | |
| dc.subject | 非生物逆境專一基因群 | zh_TW |
| dc.subject | 本質相關係數 | zh_TW |
| dc.subject | 非生物逆境 | zh_TW |
| dc.subject | 加權基因共表現網絡分析 | zh_TW |
| dc.subject | 雙軸圖 | zh_TW |
| dc.subject | the coefficient of intrinsic dependence | en |
| dc.subject | abiotic stress-specific gene module | en |
| dc.subject | biplot | en |
| dc.subject | the weighted gene co-expression network analysis | en |
| dc.subject | abiotic stress | en |
| dc.title | 本質相關係數套件cidr 及其應用 - 以找尋阿拉伯芥非生物逆境專一之基因群為例 | zh_TW |
| dc.title | cidr: A Package of Coefficient of Intrinsic Dependence (CID) and its Application of Finding the Abiotic Stress-specific Gene Modules in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 侯譪玲(Ai-Ling Hour),謝邦昌(Ben-Chang Shia),廖振鐸(Chen-Tuo Liao),蔡政安(Chen-An Tsai) | |
| dc.subject.keyword | 本質相關係數,非生物逆境,加權基因共表現網絡分析,雙軸圖,非生物逆境專一基因群, | zh_TW |
| dc.subject.keyword | the coefficient of intrinsic dependence,abiotic stress,the weighted gene co-expression network analysis,biplot,abiotic stress-specific gene module, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201701822 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
