Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67736
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇剛毅(Kang-Yi Su)
dc.contributor.authorWan-Yi Huangen
dc.contributor.author黃琬儀zh_TW
dc.date.accessioned2021-06-17T01:46:54Z-
dc.date.available2022-09-12
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-07-26
dc.identifier.citation1. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140-4.
2. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004. 23(20): p. 4051-60.
3. Cai, X., C.H. Hagedorn, and B.R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004. 10(12): p. 1957-66.
4. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9.
5. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-5.
6. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
7. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
8. Hutvagner, G. and M.J. Simard, Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol, 2008. 9(1): p. 22-32.
9. Matranga, C., et al., Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005. 123(4): p. 607-20.
10. Maniataki, E. and Z. Mourelatos, A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev, 2005. 19(24): p. 2979-90.
11. Djuranovic, S., A. Nahvi, and R. Green, A parsimonious model for gene regulation by miRNAs. Science, 2011. 331(6017): p. 550-3.
12. de Planell-Saguer, M. and M.C. Rodicio, Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta, 2011. 699(2): p. 134-52.
13. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
14. Alvarez-Garcia, I. and E.A. Miska, MicroRNA functions in animal development and human disease. Development, 2005. 132(21): p. 4653-62.
15. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8.
16. Ai, J., et al., Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun, 2010. 391(1): p. 73-7.
17. Laterza, O.F., et al., Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem, 2009. 55(11): p. 1977-83.
18. Zampetaki, A., et al., Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res, 2012. 93(4): p. 555-62.
19. Turchinovich, A., et al., Characterization of extracellular circulating microRNA. Nucleic Acids Res, 2011. 39(16): p. 7223-33.
20. Guella, I., et al., Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res, 2013. 47(9): p. 1215-21.
21. Lagos-Quintana, M., et al., Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002. 12(9): p. 735-9.
22. Mahmoudi, E. and M.J. Cairns, MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry, 2017. 22(1): p. 44-55.
23. Gambari, R., et al., Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Nuew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol, 2016. 49(1): p. 5-32.
24. Willemsen, M.H., et al., Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet, 2011. 48(12): p. 810-8.
25. Sun, G., et al., miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun, 2011. 2: p. 529.
26. Szulwach, K.E., et al., Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol, 2010. 189(1): p. 127-41.
27. Smrt, R.D., et al., MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells, 2010. 28(6): p. 1060-70.
28. Schizophrenia Psychiatric Genome-Wide Association Study, C., Genome-wide association study identifies five new schizophrenia loci. Nat Genet, 2011. 43(10): p. 969-76.
29. Guan, F., et al., MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. Schizophr Res, 2014. 152(1): p. 97-104.
30. Ripke, S., et al., Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet, 2013. 45(10): p. 1150-9.
31. Kwon, E., W. Wang, and L.H. Tsai, Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry, 2013. 18(1): p. 11-2.
32. Flora, A., et al., The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15382-7.
33. Sklar, P., et al., Whole-genome association study of bipolar disorder. Mol Psychiatry, 2008. 13(6): p. 558-69.
34. Wright, C., et al., Potential Impact of miR-137 and Its Targets in Schizophrenia. Front Genet, 2013. 4: p. 58.
35. Collins, A.L., et al., Transcriptional targets of the schizophrenia risk gene MIR137. Transl Psychiatry, 2014. 4: p. e404.
36. Zhao, L., et al., miR-137, a new target for post-stroke depression? Neural Regen Res, 2013. 8(26): p. 2441-8.
37. Devanna, P. and S.C. Vernes, A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Sci Rep, 2014. 4: p. 3994.
38. Soldati, C., et al., Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease. J Neurochem, 2013. 124(3): p. 418-30.
39. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8.
40. Smith, A.R., et al., Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget, 2015. 6(14): p. 12558-73.
41. Sakaguchi, M., et al., miR-137 Regulates the Tumorigenicity of Colon Cancer Stem Cells through the Inhibition of DCLK1. Mol Cancer Res, 2016. 14(4): p. 354-62.
42. Silber, J., et al., miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med, 2008. 6: p. 14.
43. Li, K.K., et al., MIR-137 suppresses growth and invasion, is downregulated in oligodendroglial tumors and targets CSE1L. Brain Pathol, 2013. 23(4): p. 426-39.
44. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70.
45. Zhao, Y., et al., MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS One, 2012. 7(6): p. e39102.
46. Yu, S.L., et al., MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell, 2008. 13(1): p. 48-57.
47. Chang, T.H., et al., Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C. Cancer Lett, 2017. 402: p. 190-202.
48. Su, T.J., et al., Oncogenic miR-137 contributes to cisplatin resistance via repressing CASP3 in lung adenocarcinoma. Am J Cancer Res, 2016. 6(6): p. 1317-30.
49. Steponaitiene, R., et al., Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Mol Carcinog, 2016. 55(4): p. 376-86.
50. Bemis, L.T., et al., MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res, 2008. 68(5): p. 1362-8.
51. Neault, M., F.A. Mallette, and S. Richard, miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Rep, 2016. 14(8): p. 1966-78.
52. Global Burden of Metabolic Risk Factors for Chronic Diseases, C., et al., Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet, 2014. 383(9921): p. 970-83.
53. Haslam, D.W. and W.P. James, Obesity. Lancet, 2005. 366(9492): p. 1197-209.
54. Bojanowska, E. and J. Ciosek, Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol, 2016. 14(2): p. 118-42.
55. Albuquerque, D., et al., Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics, 2015. 290(4): p. 1191-221.
56. Yazdi, F.T., S.M. Clee, and D. Meyre, Obesity genetics in mouse and human: back and forth, and back again. PeerJ, 2015. 3: p. e856.
57. Ockner, R.K., R.M. Kaikaus, and N.M. Bass, Fatty-acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis. Hepatology, 1993. 18(3): p. 669-76.
58. Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry. 2008: Macmillan.
59. McGarry, J.D. and N.F. Brown, The mitochondrial carnitine palmitoyltransferase system—from concept to molecular analysis. European Journal of Biochemistry, 1997. 244(1): p. 1-14.
60. Subramaniam, S., et al., Bioinformatics and systems biology of the lipidome. Chem Rev, 2011. 111(10): p. 6452-90.
61. Wynne, K., et al., Appetite control. J Endocrinol, 2005. 184(2): p. 291-318.
62. Bouret, S.G., S.J. Draper, and R.B. Simerly, Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci, 2004. 24(11): p. 2797-805.
63. Broberger, C., et al., Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology, 1997. 66(6): p. 393-408.
64. Hahn, T.M., et al., Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci, 1998. 1(4): p. 271-2.
65. Elias, C.F., et al., Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron, 1998. 21(6): p. 1375-85.
66. Arora, S. and Anubhuti, Role of neuropeptides in appetite regulation and obesity--a review. Neuropeptides, 2006. 40(6): p. 375-401.
67. Weiss, R.B., The anthracyclines: will we ever find a better doxorubicin? Semin Oncol, 1992. 19(6): p. 670-86.
68. Singal, P.K. and N. Iliskovic, Doxorubicin-induced cardiomyopathy. N Engl J Med, 1998. 339(13): p. 900-5.
69. Mitry, M.A. and J.G. Edwards, Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc, 2016. 10: p. 17-24.
70. Wang, J.C., DNA topoisomerases: nature's solution to the topological ramifications of the double-helix structure of DNA. Harvey Lect, 1985. 81: p. 93-110.
71. Tewey, K.M., et al., Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 1984. 226(4673): p. 466-8.
72. Wang, Y., Y.L. Lyu, and J.C. Wang, Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci U S A, 2002. 99(19): p. 12114-9.
73. Mukhopadhyay, P., et al., Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol, 2009. 296(5): p. H1466-83.
74. Rumack, B.H. and H. Matthew, Acetaminophen poisoning and toxicity. Pediatrics, 1975. 55(6): p. 871-6.
75. Bernal, W., Changing patterns of causation and the use of transplantation in the United kingdom. Semin Liver Dis, 2003. 23(3): p. 227-37.
76. Dahlin, D.C., et al., N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A, 1984. 81(5): p. 1327-31.
77. Han, D., et al., Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci, 2013. 34(4): p. 243-53.
78. Mazer, M. and J. Perrone, Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol, 2008. 4(1): p. 2-6.
79. Han, D., et al., Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol, 2003. 64(5): p. 1136-44.
80. Raetz, C.R. and C. Whitfield, Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002. 71: p. 635-700.
81. Fink, M.P., Animal models of sepsis. Virulence, 2014. 5(1): p. 143-53.
82. Wright, S.D., et al., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990. 249(4975): p. 1431-3.
83. Opal, S.M., et al., Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis, 1999. 180(5): p. 1584-9.
84. Fox, E.S., P. Thomas, and S.A. Broitman, Clearance of gut-derived endotoxins by the liver. Release and modification of 3H, 14C-lipopolysaccharide by isolated rat Kupffer cells. Gastroenterology, 1989. 96(2 Pt 1): p. 456-61.
85. Lu, Y. and A.I. Cederbaum, CYP2E1 potentiation of LPS and TNFalpha-induced hepatotoxicity by mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial dysfunction. Genes Nutr, 2010. 5(2): p. 149-67.
86. Tschop, M.H., et al., A guide to analysis of mouse energy metabolism. Nat Methods, 2011. 9(1): p. 57-63.
87. Crowley, J.J., et al., Disruption of the microRNA 137 primary transcript results in early embryonic lethality in mice. Biol Psychiatry, 2015. 77(2): p. e5-7.
88. Bains, R.S., et al., Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Front Behav Neurosci, 2016. 10: p. 106.
89. Chatterjee, K., et al., Doxorubicin cardiomyopathy. Cardiology, 2010. 115(2): p. 155-62.
90. Olson, L.E., et al., Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res, 2003. 63(20): p. 6602-6.
91. Grant, M.K., et al., Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice. Biol Sex Differ, 2017. 8: p. 1.
92. Jollow, D.J., et al., Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther, 1973. 187(1): p. 195-202.
93. Tateda, K., et al., Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect Immun, 1996. 64(3): p. 769-74.
94. Prati, D., et al., Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med, 2002. 137(1): p. 1-10.
95. Zhang, P., et al., The SNP rs1625579 in miR-137 gene and risk of schizophrenia in Chinese population: A meta-analysis. Compr Psychiatry, 2016. 67: p. 26-32.
96. Butler, E., Fatty liver diseases in the domestic fowl—A review. Avian Pathology, 1976. 5(1): p. 1-14.
97. Journal of Diabetes, R., Retracted: Skeletal muscle-specific CPT1 deficiency elevates lipotoxic intermediates but preserves insulin sensitivity. J Diabetes Res, 2014. 2014: p. 784502.
98. Robitaille, J., et al., Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians. J Mol Med (Berl), 2007. 85(2): p. 129-37.
99. McGarry, J.D. and N.F. Brown, The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem, 1997. 244(1): p. 1-14.
100. Barsh, G.S., I.S. Farooqi, and S. O'Rahilly, Genetics of body-weight regulation. Nature, 2000. 404(6778): p. 644-51.
101. Tucci, A., et al., MIR137 is the key gene mediator of the syndromic obesity phenotype of patients with 1p21.3 microdeletions. Mol Cytogenet, 2016. 9: p. 80.
102. Wei, X., et al., Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest, 1996. 98(3): p. 610-5.
103. Carter, M.T., et al., Hemizygous deletions on chromosome 1p21.3 involving the DPYD gene in individuals with autism spectrum disorder. Clin Genet, 2011. 80(5): p. 435-43.
104. Pinto, D., et al., Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet, 2014. 94(5): p. 677-94.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67736-
dc.description.abstract小分子核醣核酸(Micro RNA, miRNA)是一段長度約22個核苷酸的RNA分子,目前已被證實會透過和目標基因的結合影響其表達。本次研究所探討的miR-137,除了已知在腦部具有很高的表現量,並會參與神經元的分化與成熟,已經有團隊透過全基因組關聯分析(Genome-wide association analysis, GWAS)發現和神經官能症(Schizophrenia)相關的單核苷酸多型性(Single-nucleotide polymorphism, SNP)就位於miR-137的上游,另外也有許多文獻探討miR-137在癌症所扮演的角色,像是在非小細胞肺癌(Non-small cell lung cancer, NSCLC)中被認為可以用來預測病人具有不好的預後。miR-137廣泛地參與許多生物體的作用,於是我們以此為基礎,想要進一步在動物模型探討miR-137的生理意義。首先我們針對小鼠的各個重要器官進行miR-137表現量之剖析,發現前三高表現量的器官分別是大腦、心臟及肝臟,考量實驗室所擁有的方法學,我們選擇阿黴素(Doxorubicin)、乙醯胺酚(Acetaminophen)、脂多醣(Lipopolysaccharide)、高油脂飼料(High-fat diet)分別針對心臟及肝臟(後三者)給予小鼠短期壓力,結果發現只有在經過一個月的高油脂飼料的餵食後,小鼠肝臟的miR-137表現量顯著地下降了。而在先前實驗室所製作出的miR-137基因全身剔除小鼠(whole-body homozygous miR-137 knockout mice)的觀察中,已知Knockout (miR-137-/-)小鼠大約在出生後21天死亡,且有嚴重的生長遲緩現象,在隨機血糖的測量上,Wild-type (miR-137+/+)、Heterozygous (miR-137+/-)、Knockout小鼠呈現高中低的趨勢,透過組織染色發現Knockout小鼠的脂肪細胞嚴重萎縮(Adipose atrophy)。根據上述的初步結果,我們認為miR-137可能與小鼠的生理代謝有關,而由於Knockout小鼠早夭的特性,本次研究是以Heterozygous老鼠為主,以一般飼料(Regular diet; RD)飼養到七周大成鼠時,依據實驗設計再給予特定組別高油脂飼料(High-fat diet; HFD),是一種常見在活體實驗中給予代謝壓力的實驗策略。首先在全程餵食一般飼料的組別中,Heterozygous小鼠體重上升的較多,但攝食量並沒有顯著差異,血清中的三酸甘油脂和肝臟中的脂肪酸氧化(β-oxidation)的決定速率酵素Cpt1a 表現量則比起控制組更高,表示miR-137的減少確實對於小鼠的代謝產生了影響。進一步我們給予小鼠HFD,一開始在不限制HFD飲食量的組別中,Heterozygous小鼠體重上升的較多,但攝食量也比起控制組更高,暗示了miR-137和小鼠食慾的關係。而進一步針對小鼠的代謝,給予相同量的HFD (Pair-feeding),發現Heterozygous小鼠的增重幅度並沒有如預期地和控制組有所不同,表示這個根據這個實驗策略,不同基因型(Genotype)小鼠的代謝並沒有差異。。
結果顯示,在活體中miR-137的減少除了影響小鼠的代謝,也影響了小鼠對於高油脂飼料的食慾,我們也期待miR-137能成為具有潛力的調控代謝及食慾的指標,甚至有朝一日能應用於代謝症候群的治療上,進而改善族群的健康。
zh_TW
dc.description.abstractMicroRNA is a class of non-coding RNA which is about 22 nucleotides long and has been widely studied in the regulation of gene expression. Recent studies revealed that miR-137 plays a potential role in neural development and cancer biology. However, the direct investigation in vivo for miR-137 is still rare. In the first, we had validated the top three miR-137 highly-expressed organs: brain, heart and liver. According to the accessible material in our lab, we chose doxorubicin, acetaminophen, lipopolysaccharide and high-fat diet as a short-term stress to affect miR-137 expression. Only high-fat diet feeding for 1 month downregulated the expression level of miR-137 in mouse liver. Besides, we had generated whole-body homozygous miR-137 knockout mice (miR-137-/-), and observed that miR-137-/- mice were died around 21-days-old with dramatic growth retardation. The random blood glucose was measured in a lower trend between the wild-type (miR-137+/+), heterozygous knockout (miR-137+/-) and miR-137-/- mice. In addition, the adipose tissue was severely atrophy in the miR-137-/- mice. We hypothesized that miR-137 would affect the physiological metabolism, and focused on miR-137+/- adult mice for our research. First, during regular diet-feeding, miR-137+/- mice gained much weight with no significantly different amount of food intake. Serum triglyceride and Cpt1a mRNA expression level were elevated in miR-137+/- mice compared to the wild-type control. Thus, miR-137 deficiency has impact on mouse basal metabolism. Furtherly, we subjected mice to a high-fat diet (HFD), which was commonly used as metabolism stress. With the ad libitum HFD-feeding, we found that miR-137+/- ate more HFD with heavier body weight compared to the wild-type control, linking miR-137 and appetite for the first time. We then introduced pair HFD-feeding to mice targeting for metabolism, but results indicated that there was no difference in metabolism between genotypes based on this strategy.
In conclusion, miR-137 may play a role in both metabolism and appetite in vivo. We expect that miR-137 may be a potential marker for regulation of metabolism and appetite and a useful therapeutic target applied in the metabolic disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:46:54Z (GMT). No. of bitstreams: 1
ntu-106-R04424025-1.pdf: 1567823 bytes, checksum: d8e170011cbb1951ba49aaaec087c14c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審訂書 I
誌謝 II
中文摘要 IV
ABSTRACT VI
1. INTRODUCTION 1
1.1 MicroRNA 1
1.2 miR-137 2
1.2.1 miR-137 in neurology 2
1.2.2 miR-137 in oncology 5
1.3 Fatty acid metabolism 6
1.4 Appetite 8
1.5 Specific aim 9
1.6 Study design 9
1.6.1 Short-term stress based on the previous profile 9
1.6.2 HFD, a metabolism stress to miR-137+/- mice 12
2. MATERIALS AND METHODS 14
2.1 MiR-137 knockout mice model 14
2.1.1 Animals keeping 14
2.1.2 Tail DNA extraction and genotyping 14
2.2 Short-term stress on wild-type mice 15
2.2.1 Doxorubicin injection 16
2.2.2 Acetaminophen injection 16
2.2.3 Lipopolysaccharide injection 17
2.2.4 High-fat diet feeding 17
2.3 Long-term high fat-diet feeding 17
2.4 Sample preparation 18
2.4.1 Blood collection and mice sacrificing 18
2.4.2 Real-time quantitative RT-PCR 18
2.5 Pathology interpretation 20
2.6 Body composition analysis 20
2.7 Home cage activity 20
2.8 Food and water intake analysis 21
3. RESULTS 22
3.1 Mice model confirmation 22
3.2 miR-137 expression level after short-term stress 22
3.3 Whole-body deletion of MiR-137 in mice alters the phenotype. 23
3.4 miR-137+/- mice show no significant difference in body composition analysis. 24
3.5 miR-137+/- mice spend more time eating and drinking in the twenty-four hour activity analysis during regular diet-feeding. 24
3.6 miR-137+/- mice gain weight faster than wild-type mice during regular diet-feeding. 25
3.7 miR-137+/- mice gain weight faster than wild-type mice during ad libitum high-fat diet-feeding. 25
3.8 miR-137+/- mice have no significant altered phenotype in pair high-fat diet-feeding compared to the wild-type control. 26
3.9 Cpt1, the rate-limiting marker of FA oxidation, is upregulated in miR-137+/- mice during RD-feeding. 27
4. CONCLUSIONS 28
5. DISCUSSIONS 30
5.1 miR-137 knockout mice in this study 30
5.2 Animal housing to the home cage analysis 31
5.3 The short-term stress to mouse 32
5.4 miR-137 to appetite 32
5.5 Rebounding of miR-137 expression level in wild-type mice for 2 months HFD-feeding 33
5.6 Upregulated Cpt1a mRNA and decreased fat mass in miR-137+/- mice 33
5.7 Upregulated Acc mRNA in miR-137+/- after pair HFD-feeding 34
5.8 miR-137 in metabolism 34
6. Figure 37
7. TABLES 50
8. REFERENCE 51
SUPPLEMENTARY DATA 65
APPENDIX 67
dc.language.isoen
dc.subject小分子核糖核酸-137zh_TW
dc.subject基因剔除鼠zh_TW
dc.subject食慾zh_TW
dc.subject代謝zh_TW
dc.subject高油脂飼料zh_TW
dc.subjecthigh-fat dieten
dc.subjectappetiteen
dc.subjectmiR-137en
dc.subjectmetabolismen
dc.subjectknockout miceen
dc.title小分子核糖核酸-137對食慾及代謝之影響造成小鼠體重增重zh_TW
dc.titleThe Impact of miR-137 on Appetite and Metabolism Caused Body Weight Gainen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林亮音(Liang-In Lin),楊雅倩(Ya-Chien Yang),張以承(Yi-Cheng Chang)
dc.subject.keyword小分子核糖核酸-137,基因剔除鼠,高油脂飼料,代謝,食慾,zh_TW
dc.subject.keywordmiR-137,knockout mice,high-fat diet,metabolism,appetite,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201702001
dc.rights.note有償授權
dc.date.accepted2017-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved