請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67728完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智芬(Zee-Fen Chang) | |
| dc.contributor.author | Tse-Hsiang Wu | en |
| dc.contributor.author | 吳澤祥 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:46:27Z | - |
| dc.date.available | 2019-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | Chapter I
Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, Huser N, Proffitt C, Bliesath J, Haddach M, Schwaebe MK, Ryckman DM, Rice WG, Schmitt C, Lowe SW, Johnstone RW, Pearson RB, McArthur GA, Hannan RD (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer cell 22: 51-65 Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16: 341-350 Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458: 219-222 El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes & development 24: 1546-1558 Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F, Moss T (2009) Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Molecular cell 35: 414-425 Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Human molecular genetics 18: 3178-3193 Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. The Journal of biological chemistry 280: 13341-13348 Grierson PM, Lillard K, Behbehani GK, Combs KA, Bhattacharyya S, Acharya S, Groden J (2012) BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription. Human molecular genetics 21: 1172-1183 Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Human molecular genetics 16 Spec No 1: R21-27 Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122: 487-497 Grummt I, Langst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochimica et biophysica acta 1829: 393-404 Hraiky C, Raymond MA, Drolet M (2000) RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in Escherichia coli. The Journal of biological chemistry 275: 11257-11263 Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. Frontiers in genetics 5: 366 Kuo YY, Chang ZF (2007) GATA-1 and Gfi-1B interplay to regulate Bcl-xL transcription. Molecular and cellular biology 27: 4261-4272 Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST (2006) Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. The Journal of biological chemistry 281: 22062-22072 Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell cycle 4: 1036-1038 Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384-6391 McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annual review of cell and developmental biology 24: 131-157 Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257 Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature genetics 19: 219-220 Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552-556 Robertson KD (2002) DNA methylation and chromatin - unraveling the tangled web. Oncogene 21: 5361-5379 Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic acids research 27: 2291-2298 Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends in biochemical sciences 30: 87-96 Sidorova JM, Kehrli K, Mao F, Monnat R, Jr. (2013) Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA repair 12: 128-139 Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines. The EMBO journal 20: 4892-4900 Toku S, Nabeshima Y, Ogata K (1983) Effects of low dose actinomycin D treatment in vivo on the biosynthesis of ribosomal proteins in rat liver. Journal of biochemistry 93: 349-359 Wickramasinghe VO, Venkitaraman AR (2016) RNA Processing and Genome Stability: Cause and Consequence. Molecular cell 61: 496-505 Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nature cell biology 16: 2-9 Chapter II Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275: 1308-1311 Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K (1999) The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. The Journal of biological chemistry 274: 32418-32424 Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). Journal of Biological Chemistry 271: 20246-20249 Bierhoff H, Dundr M, Michels AA, Grummt I (2008) Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Molecular and cellular biology 28: 4988-4998 Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Molecular cell 40: 216-227 Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. The Journal of cell biology 172: 41-53 Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR (2004) Structural insights into the interaction of ROCKI with the switch regions of RhoA. The Journal of biological chemistry 279: 7098-7104 Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Human molecular genetics 16: R21-R27 Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122: 487-497 Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated 81 kinases. Molecular pharmacology 57: 976-983 Kruhlak M, Crouch EE, Orlov M, Montaño C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447: 730-734 Le Beyec J, Xu R, Lee S-Y, Nelson CM, Rizki A, Alcaraz J, Bissell MJ (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental cell research 313: 3066-3075 Lecuit T, Lenne P-F, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annual review of cell and developmental biology 27: 157-184 Lee HH, Chang ZF (2008) Regulation of RhoA-dependent ROCKII activation by Shp2. The Journal of cell biology 181: 999-1012 Lee HH, Tien SC, Jou TS, Chang YC, Jhong JG, Chang ZF (2010) Src-dependent phosphorylation of ROCK participates in regulation of focal adhesion dynamics. Journal of cell science 123: 3368-3377 Mammoto A, Ingber DE (2009) Cytoskeletal control of growth and cell fate switching. Current opinion in cell biology 21: 864-870 Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences 94: 849-854 Mayer C, Bierhoff H, Grummt I (2005) The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes & development 19: 933-941 McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annual review of cell and developmental biology 24: 131-157 Munjal A, Lecuit T (2014) Actomyosin networks and tissue morphogenesis. Development 141: 1789-1793 82 Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133: 627-639 Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nature Reviews Molecular Cell Biology 16: 486-498 Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods in enzymology 325: 273-284 Ostlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG, Worman HJ (2009) Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. Journal of cell science 122: 4099-4108 Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences 104: 15619-15624 Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nature reviews Molecular cell biology 4: 446-456 Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends in biochemical sciences 30: 87-96 Shankar S, Srivastava RK (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. In Programmed Cell Death in Cancer Progression and Therapy, pp 261-298. Springer Shivashankar G (2011) Mechanosignaling to the cell nucleus and gene regulation. Annual review of biophysics 40: 361-378 Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Experimental cell research 314: 1892-1905 Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II 83 Inhibitor. Science 299: 1743-1747 Tsang CK, Zheng XS (2007) TOR-in (g) the nucleus. Cell Cycle 6: 25-29 Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature reviews Molecular cell biology 10: 778-790 Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature reviews Molecular cell biology 10: 75-82 Worman HJ, Gundersen GG (2006) Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol 16: 67-69 Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of cell science 114: 4485-4498 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67728 | - |
| dc.description.abstract | Chapter I
DNA methyltransferase 3b (DNMT3b)已知在表徵遺傳學上的修飾作用扮演重要的調節角色。它主要的功能在於產生de novo 的DNA 甲基化作用(methylation),這個功能對於細胞生長(cell growth)以及維持基因組的穩定(genome stability)是必須的。利用HCT116 細胞,我們發現DNMT3b 剔除(knockout)的細胞表現高量的DNA 損傷訊號 (DNA damage signal),以H2AX foci 形式表現,經由抑制RNA polymerase I(Pol I)的轉錄作用,可以明顯降低這些DNA 損傷訊號。雖然Pol I 主要的功能是核醣體RNA(ribosomal RNA)轉錄作用,但這些DNA 損傷訊號的位置並不在rRNA 基因上,除非細胞週期同步於有絲分裂期(mitotic progression)。我們進一步觀察到Pol I 的抑制作用可以減少在BKO 細胞中的基因組不穩定性(genome instability)。將原生型(wild-type)以及失去酵素活性(catalytic-dead)的DNMT3b 表現於BKO 細胞中,可以降低BKO 細胞中的DNA 損傷訊號以及基因組不穩定性,表示DNMT3b 在預防Pol I 所引導的DNA 損傷訊號所扮演的角色,不需要DNA 甲基化作用(DNA methylation)的參與。研究結果也顯示,PolI 可以和BLM 結合,並且防止轉錄作用所引導的R loop 形成。此外,我們利用ChIP-re-ChIP 的實驗來證明DNMT3b 缺乏會導致BLM 結合到 Pol I 調節的rDNA 基因上的數量減少。大量表現RNaseH1 在BKO 細胞中,可移除RNA/DNA hybrid 以及減弱DNA 損傷訊號。根據這些發現,我們推測在HCT116 細胞中的DNMT3b 主要的功能角色是防止Pol I 轉錄作用所導致的R-loop 形成,進而維持基因組的穩定性。 Chapter II 目前已知ribosomal RNA(rRNA) 的合成作用是受到細胞能量(cellular energy)以及細胞增生狀態(proliferation status)來調節。在本篇研究中,我們發現到rRNA 基因轉錄作用會受到細胞骨架壓力(cytoskeletal stress)的影響。我們的結果顯示HeLa細胞外型被等向性(isotropic)的micropattern所限制住的時候,會導致rRNA轉錄作用顯著的減少,而這個機制是依賴ROCK才能完成;此一現象在長條形(elongated)的micropattern則不會發生。在細胞中表現一個活化型的ROCK也可以導致rRNA轉錄作用被抑制。等向性的限制與ROCK過度活化所形成的異常F-actin結構有很大的不同,但它們在rRNA轉錄作用的抑制作用卻是極為相似的,並且都可以藉由histone deacetylase (HDAC)的抑制作用或者過度表現Nesprin來回復rRNA轉錄作用。Nesprin是藉由類似護盾的機制將從actin filament傳遞到細胞核之間的作用力阻斷。我們進一步顯示在ROCK過度表現的情況下,HDAC1結合到rDNA基因的程度會增加,進而減少H3K9/14 乙醯化作用(acetylation)以及抑制轉錄作用。我們的結果證實一個表徵遺傳學控制活化rDNA基因的機制,是藉由接收到細胞骨架壓力進而抑制rRNA轉錄作用。 | zh_TW |
| dc.description.abstract | Chapter I
DNA methyltransferase 3b (DNMT3b) is an important regulator in epigenetic modification by de novo DNA methylation that is essential for cell growth and genome stability. Using HCT-116 cells, we found that DNMT3b knockout increases DNA damage signal indicating by H2AX foci, which are markedly reduced by inhibition of RNA polymerase I (Pol I) transcription repression. Although the major function of Pol I is ribosomal RNA transcription, H2AX was not associated with rRNA genes, unless cells were synchronized for mitotic progression. We further observed that Pol I inhibition was able to decrease genome instability in these BKO cells. Expression of wild-type and catalytic-dead DNMT3b in BKO cells abolished DNA damage signal and genome instability, suggesting the role of DNMT3b in preventing Pol I dependent DNA damage is independent of its DNA methylation function. It has been shown that Pol I is associated with BLM to prevent transcription-mediated R loop formation. The ChIP-re-ChIP analysis demonstrated that DNMT3b deficiency decreased the amount of BLM associated with Pol I-bound rDNA genes. Overexpression of RNase H1 that removes RNA/DNA hybrid diminished DNA damage signal in BKO cells. According to these findings, we proposed that DNMT3b in HCT116 might has a functional role in preventing polI transcription-mediated R-loop formation to maintain genome stability. Chapter II It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of dominant active ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:46:27Z (GMT). No. of bitstreams: 1 ntu-106-D96442004-1.pdf: 5762431 bytes, checksum: 28959cbac71a78506e2ea5dd0dbf8437 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter I – Regulation of Pol I-mediated ribosomal RNA transcription by DNMT3b in genome instability.................................................................................. 1
Abstract................................................................................................................. 2 中文摘要................................................................................................................ 3 引論........................................................................................................................ 4 Rationale............................................................................................................. 11 結果與討論......................................................................................................... 12 材料與方法......................................................................................................... 19 Figures and Legends.......................................................................................... 23 參考文獻.............................................................................................................. 43 Chapter II – Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization ........................................... 46 Abstract............................................................................................................... 47 中文摘要.............................................................................................................. 48 引論...................................................................................................................... 49 Rationale............................................................................................................. 52 結果...................................................................................................................... 53 討論...................................................................................................................... 60 材料與方法......................................................................................................... 63 Figures and Legends.......................................................................................... 68 參考文獻.............................................................................................................. 80 Vita...................................................................................................................... 84 Appendix............................................................................................................. 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞骨架 | zh_TW |
| dc.subject | RNA聚合?I | zh_TW |
| dc.subject | DNA甲基轉移?3B | zh_TW |
| dc.subject | RNA polymerase I | en |
| dc.subject | DNA methyltransferase 3B | en |
| dc.subject | cytoskeleton | en |
| dc.title | RNA 聚合酶I 藉由DNA 甲基轉移酶3B 以及細胞骨架重組所進行的功能性調節 | zh_TW |
| dc.title | Functional regulation of RNA polymerase I by DNA methyltransferase 3B and cytoskeletal reorganization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 李明學(Ming-Shyue Lee) | |
| dc.contributor.oralexamcommittee | 施修明(Hsiu-Ming Shih),吳君泰(June-Tai Wu),陳威儀(Wei-Yi Chen) | |
| dc.subject.keyword | RNA聚合?I,DNA甲基轉移?3B,細胞骨架, | zh_TW |
| dc.subject.keyword | RNA polymerase I,DNA methyltransferase 3B,cytoskeleton, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201701854 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
