Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許鶴瀚(Ho-Han Hsu)
dc.contributor.authorYin-Hsuan Liaoen
dc.contributor.author廖音瑄zh_TW
dc.date.accessioned2021-06-17T01:46:23Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAharon, P., Chappell, J. (1986). Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years. Palaeogeography, palaeoclimatology, palaeoecology, 56(3-4), 337-379.
Allen, J. R. L. (1968). The nature and origin of bed‐form hierarchies. Sedimentology, 10(3), 161-182.
Allen, J. R. L. (1980). Sand waves: a model of origin and internal structure. Sedimentary Geology, 26(4), 281-328.
Anthony, D., Leth, J. O. (2002). Large-scale bedforms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast. Marine Geology, 182(3-4), 247-263.
Ashley, G. M. (1990). Classification of large-scale subaqueous bedforms; a new look at an old problem. Journal of Sedimentary Research, 60(1), 160-172.
Barnard, P. L., Hanes, D. M., Rubin, D. M., Kvitek, R. G. (2006). Giant sand waves at the mouth of San Francisco Bay. Eos, Transactions American Geophysical Union, 87(29), 285-289.
Belderson, R. H. (1982). Bedforms. Offshore tidal sands., 3, 27-57.
Bell Jr, T. H. (1975, December). Statistical features of sea-floor topography. In Deep Sea Research and Oceanographic Abstracts, 22(12), 883-892.
Berne, S., Castaing, P., Le Drezen, E., Lericolais, G. (1993). Morphology, internal structure, and reversal of asymmetry of large subtidal dunes in the entrance to Gironde Estuary (France). Journal of Sedimentary Research, 63(5), 780-793.
Besio, G., Blondeaux, P., Brocchini, M., Vittori, G. (2004). On the modeling of sand wave migration. Journal of Geophysical Research: Oceans, 109(C4).
Besio, G., Blondeaux, P., Vittori, G. (2006). On the formation of sand waves and sand banks. Journal of Fluid Mechanics, 557, 1-27.
Besio, G., Blondeaux, P., Brocchini, M., Hulscher, S. J., Idier, D., Knaapen, M. A. F., ... Vittori, G. (2008). The morphodynamics of tidal sand waves: A model overview. Coastal engineering, 55(7-8), 657-670.
Best, J., Kostaschuk, R., Hardy, R. (2004). The fluid dynamics of lowangle river dunes: Results from integrated field monitoring, laboratory experimentation and numerical modelling. Marine Sandwave and River Dune Dynamics II, University of Twente, Enschede, Netherlands, 17-23.
Blondeaux, P., Vittori, G. (2011). The formation of tidal sand waves: Fully three-dimensional versus shallow water approaches. Continental Shelf Research, 31(9), 990-996.
Boggs Jr, S. (1974). Sand-wave fields in Taiwan Strait. Geology, 2(5), 251-253.
Buijsman, M. C., Ridderinkhof, H. (2008). Long-term evolution of sand waves in the Marsdiep inlet. I: High-resolution observations. Continental Shelf Research, 28(9), 1190-1201.
Cazenave, P. W., Dix, J. K., Lambkin, D. O., McNeill, L. C. (2013). A method for semi‐automated objective quantification of linear bedforms from multi‐scale digital elevation models. Earth Surface Processes and Landforms, 38(3), 221-236.
Chang, J. H., Hsu, H. H., Su, C. C., Liu, C. S., Hung, H. T., Chiu, S. D. (2015). Tectono-sedimentary control on modern sand deposition on the forebulge of the Western Taiwan Foreland Basin. Marine and Petroleum Geology, 66, 970-977.
Chappell, J., Polach, H. (1991). Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature, 349(6305), 147-149.
Chen, Y. G., Liu, T. K. (1996). Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, 45(3), 254-262.
Chen, Y. G., Liu, T. K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19(9), 923-930.
Chen, H. W., Lee, T. Y., Wu, L. C. (2010). High-resolution sequence stratigraphic analysis of Late Quaternary deposits of the Changhua Coastal Plain in the frontal arc-continent collision belt of Central Taiwan. Journal of Asian Earth Sciences, 39(3), 192-213.
Cherlet, J., Besio, G., Blondeaux, P., Van Lancker, V., Verfaillie, E., Vittori, G. (2007). Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais‐Dover Strait. Journal of Geophysical Research: Oceans, 112(C6).
Church, J. A., Hunter, J. R., McInnes, K. L., White, N. J. (2006). Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Australian Meteorological Magazine, 55(4), 253-260.
Damen, J. M., van Dijk, T. A. G. P., Hulscher, S. J. (2018). Spatially varying environmental properties controlling observed sand wave morphology. Journal of Geophysical Research: Earth Surface, 123(2), 262-280.
Dalrymple, R. W. (1992). Tidal depositional systems. Facies models response to sea-level change., 195-218.
Dijk, T. A., Kleuskens, M. H. P., Dorst, L. L., Tak, C., Doornenbal, P. J., Spek, A. J. F., ... Noorlandt, R. P. (2012). Quantified and applied sea-bed dynamics of the Netherlands Continental Shelf and the Wadden Sea. Jubilee Conference Proceedings, 223-227.
Dorst, L. L., Roos, P. C., Hulscher, S. J. (2013). Improving a bathymetric resurvey policy with observed sea floor dynamics. Journal of applied geodesy, 7(1), 51-64.
Duffy, G. P., Hughes‐Clarke, J. E. (2005). Application of spatial cross correlation to detection of migration of submarine sand dunes. Journal of Geophysical Research: Earth Surface, 110(F4).
Duffy, G. P. (2012). Patterns of morphometric parameters in a large bedform field: development and application of a tool for automated bedform morphometry. Irish Journal of Earth Sciences, 31-39.
Ernstsen, V. B., Noormets, R., Winter, C., Hebbeln, D., Bartholomä, A., Flemming, B. W., Bartholdy, J. (2005). Development of subaqueous barchanoid‐shaped dunes due to lateral grain size variability in a tidal inlet channel of the Danish Wadden Sea. Journal of Geophysical Research: Earth Surface, 110(F4).
Fairbanks, R. G. (1989). A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), 637-642.
Flemming, B. W. (2000). The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In Marine sandwave dynamics, international workshop , 23-24.
Fox, C. G., Hayes, D. E. (1985). Quantitative methods for analyzing the roughness of the seafloor. Reviews of Geophysics, 23(1), 1-48.
Francken, F., Wartel, S., Parker, R., Taverniers, E. (2004). Factors influencing subaqueous dunes in the Scheldt Estuary. Geo-Marine Letters, 24(1), 14-21.
Franzetti, M., Le Roy, P., Delacourt, C., Garlan, T., Cancouët, R., Sukhovich, A., Deschamps, A. (2013). Giant dune morphologies and dynamics in a deep continental shelf environment: example of the banc du four (Western Brittany, France). Marine Geology, 346, 17-30.
Friedman, G. M. Sanders, J. E. (1978). Principles Of Sedimentology. John Wiley Sons, New York, 792p.
Games, K. P., Gordon, D. I. (2015). Study of sand wave migration over five years as observed in two windfarm development areas, and the implications for building on moving substrates in the North Sea. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 105(4), 241-249.
Gerkema, T. (2000). A linear stability analysis of tidally generated sand waves. Journal of Fluid Mechanics, 417, 303-322.
Geyh, M. A., Streif, H., Kudrass, H. R. (1979). Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. Nature, 278(5703), 441-443.
Goff, J. A., Jordan, T. H. (1988). Stochastic modeling of seafloor morphology: Inversion of sea beam data for second‐order statistics. Journal of Geophysical Research: Solid Earth, 93(B11), 13589-13608.
Hanebuth, T., Stattegger, K., Grootes, P. M. (2000). Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science, 288(5468), 1033-1035.
Harris, P. T. (1989). Sandwave movement under tidal and wind-driven currents in a shallow marine environment: Adolphus Channel, northeastern Australia. Continental Shelf Research, 9(11), 981-1002.
He, X., Chen, N., Zhang, H., Fu, B., Wang, X. (2014). Reconstruction of sand wave bathymetry using both satellite imagery and multi-beam bathymetric data: a case study of the Taiwan Banks. International Journal of Remote Sensing, 35(9), 3286-3299.
Hino, M. (1968). Equilibrium-range spectra of sand waves formed by flowing water. Journal of Fluid Mechanics, 34(3), 565-573.
Hulscher, S. J. (1996). Tidal‐induced large‐scale regular bed form patterns in a three‐dimensional shallow water model. Journal of geophysical research: Oceans, 101(C9), 20727-20744.
Hulscher, S. J., van den Brink, G. M. (2001). Comparison between predicted and observed sand waves and sand banks in the North Sea. Journal of geophysical research: Oceans, 106(C5), 9327-9338.
Idier, D., Ehrhold, A., Garlan, T. (2002). Morphodynamics of an undersea sandwave of the Dover Straits. Comptes Rendus Geoscience, 334(15), 1079-1085.
Jan, S., Wang, J., Chern, C. S., Chao, S. Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3-4), 249-268.
Jordan, G. F. (1962). Large submarine sand waves. Science, 136(3519), 839-848.
Kennedy, A. B., Slatton, K. C., Hsu, T. J., Starek, M. J., Kampa, K. (2008). Ephemeral sand waves in the hurricane surf zone. Marine Geology, 250(3-4), 276-280.
Knaapen, M. A. F., Hulscher, S. J. (2002). Regeneration of sand waves after dredging. Coastal Engineering, 46(4), 277-289.
Knaapen, M. A. F. (2005). Sandwave migration predictor based on shape information. Journal of Geophysical Research: Earth Surface, 110(F4).
Knaapen, M. A. (2009). Sandbank occurrence on the Dutch continental shelf in the North Sea. Geo-marine letters, 29(1), 17-24.
Kösters, F., Winter, C. (2014). Exploring German Bight coastal morphodynamics based on modelled bed shear stress. Geo-Marine Letters, 34(1), 21-36.
Lane, E. W., Eden, E. W. (1940). Sand waves in the lower Mississippi River. J West Soc Eng, 45(6), 281.
Le Bot, S., Trentesaux, A. (2004). Types of internal structure and external morphology of submarine dunes under the influence of tide-and wind-driven processes (Dover Strait, northern France). Marine Geology, 211(1-2), 143-168.
Liao, H. R., Yu, H. S., (2005). Morphology, Hydrodynamics anti Sediment Characteristics of the Changyun Sand Ridge offshore Western Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16, 621-640.
Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4), 65-76.
Longhitano, S. G., Mellere, D., Steel, R. J., Ainsworth, R. B. (2012). Tidal depositional systems in the rock record: a review and new insights. Sedimentary Geology, 279, 2-22.
McCave, I. N. (1971). Sand waves in the North Sea off the coast of Holland. Marine geology, 10(3), 199-225.
Milliman, J. D., Farnsworth, K. L. (2013). River discharge to the coastal ocean: a global synthesis. Cambridge University Press.
Morelissen, R., Hulscher, S. J., Knaapen, M. A., Németh, A. A., Bijker, R. (2003). Mathematical modelling of sand wave migration and the interaction with pipelines. Coastal Engineering, 48(3), 197-209.
Németh, A. A., Hulscher, S. J., de Vriend, H. J. (2002). Modelling sand wave migration in shallow shelf seas. Continental Shelf Research, 22(18-19), 2795-2806.
Peltier, W. R., Fairbanks, R. G. (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews, 25(23-24), 3322-3337.
Pendleton, E. A., Brothers, L. L., Thieler, E. R., Sweeney, E. M. (2017). Sand ridge morphology and bedform migration patterns derived from bathymetry and backscatter on the inner-continental shelf offshore of Assateague Island, USA. Continental Shelf Research, 144, 80-97.
Rohling, E. J., Fenton, M. J. J. F., Jorissen, F. J., Bertrand, P., Ganssen, G., Caulet, J. P. (1998). Magnitudes of sea-level lowstands of the past 500,000 years. Nature, 394(6689), 162-165.
Santoro, V. C., Amore, E., Cavallaro, L., De Lauro, M. (2004). Evolution of sand waves in the Messina Strait, Italy. Ocean Dynamics, 54(3-4), 392-398.
Tensi, J., Mouthereau, F., Lacombe, O. (2006). Lithospheric bulge in the west Taiwan basin. Basin Research, 18(3), 277-299.
Terwindt, J. H. (1971). Sand waves in the Southern Bight of the North Sea. Marine Geology, 10(1), 51-67.
Van Dijk, T. A. G. P., Lindenbergh, R. C., Egberts, P. J. (2008). Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared. Journal of Geophysical Research: Earth Surface, 113(F4).
Van Dijk, T. A. G. P., Van der Tak, C., De Boer, W. P., Kleuskens, M. H. P., Doornenbal, P. J., Noorlandt, R. P., Marges, V. C. (2011). The scientific validation of the hydrographic survey policy of the Netherlands Hydrographic Office, Royal Netherlands Navy. Deltares report.
Van Landeghem, K. J., Uehara, K., Wheeler, A. J., Mitchell, N. C., Scourse, J. D. (2009). Post-glacial sediment dynamics in the Irish Sea and sediment wave morphology: Data–model comparisons. Continental Shelf Research, 29(14), 1723-1736.
Van Landeghem, K. J., Baas, J. H., Mitchell, N. C., Wilcockson, D., Wheeler, A. J. (2012). Reversed sediment wave migration in the Irish Sea, NW Europe: A reappraisal of the validity of geometry-based predictive modelling and assumptions. Marine Geology, 295, 95-112.
Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M. J., Vail, P. R., Sarg, J. F., Loutit, T. S., Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. Sea level changes: an integrated approach: SEPM Special Publication, 42, 39-45.
Wang, Y. H., Jan, S., Wang, D. P., (2003). Transport through Taiwan Strait from shipboard ADCP observations (1999–2001). Estuarine, Coastal and Shelf Science 57, 195–201.
Wynn, R. B., Masson, D. G., Bett, B. J. (2002). Hydrodynamic significance of variable ripple morphology across deep-water barchan dunes in the Faroe–Shetland Channel. Marine Geology, 192(1-3), 309-319.
Zhou, J., Wu, Z., Jin, X., Zhao, D., Cao, Z., Guan, W. (2018). Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea. Marine Geology, 406, 132-141.
Yang, R. J., Liu, J. T., Fan, D., Burr, G. S., Lin, H. L., Chen, T. T. (2017). Land-sea duel in the late Quaternary at the mouth of a small river with high sediment yield. Journal of Asian Earth Sciences, 143, 59-76.
Yu, H. S. (2003). Geological characteristics and distribution of submarine physiographic features in the Taiwan region. Marine Georesources and Geotechnology, 21(3-4), 139-153.
Yu, H. S., Chou, Y. W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333(1-2), 277-291.
杜晓琴, 李炎, 高抒. (2008). 台湾浅滩大型沙波, 潮流结构和推移质输运特征. 海洋学报, 30(5), 124-136.
余威, 吴自银, 周洁琼, 赵荻能. (2015). 台湾浅滩海底沙波精细特征, 分类与分布规律. 海洋学报, 37(10), 11-25.
邱瑞焜 (2000) 烏坵嶼附近海域的3.5千赫回聲型態及沈積作用 ,國立臺灣大學海洋研究所碩士論文,共64頁。
吳姿孟 (2002) 以聲納資料觀測澎湖水道附近沙丘之外型輪廓及其與海流的關係,國立臺灣海洋大學應用物理研究所研究所碩士論文,共116頁。
高慧如 (2002) 台灣海峽北部現代沈積物之沈積速率與傳輸途徑,國立臺灣大學海洋研究所碩士論文,共108頁。
張植翔 (2000) 台灣海峽東側海域之海床表層沉積物及其可能的沉積作用 ,國立臺灣大學海洋研究所碩士論文,共100頁。
張嫚珊 (2008) 台灣海峽東側沉積物之來源及其傳輸途徑,國立臺灣大學海洋研究所碩士論文,共83頁。
廖宏儒 (2006) 彰雲潮流沙脊之形貌、沉積作用及演化模式,國立臺灣大學海洋研究所博士論文,共107頁。
劉佩琨 (2007) 側掃聲納數位影像之解析與辨識分析研究,國立臺灣大學海洋研究所博士論文,共253頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67727-
dc.description.abstract沙波為常見於淺水或近岸海域之海床形貌,因沉積物與海流相互作用下所形成,並會隨潮流遷移,進而可能對海事工程的安全與營運造成影響,故成為重要的研究議題。過去研究發現臺灣海峽因其地質環境與潮流作用,海域內有大範圍的沙波發育,但由於缺乏全面、重複性及高解析的調查資料,過去對於沙波的遷移與演化尚未能詳細瞭解。本研究透過高解析多音束水深及反射震測資料,結合區域海水面變化與近岸區的陸域岩心資料,分析與探討中臺灣海峽近岸區沙波之形貌、遷移的時空特性及發育過程。地形分析顯示區域內沙波之波長為35至295公尺,波高為0.6至8.2公尺,於兩年半間最大移動量達95公尺,最大高程變化達6.7公尺,且沙波變遷方式有垂直於波向遷移及沿著波向匯聚增高兩種方式。而根據5次地形資料的分析結果,在兩年半間沙波移動平均速率為每月0.76公尺,但於兩個月間卻為每月10.31公尺,且在小於400公尺之距離內可觀察到移動方向相反之沙波遷移模式,證明沙波遷移不僅具有往覆性,時空變化也具高度複雜性,呈現非線性變化模式。震測及層序地層分析結果顯示,研究區域之地層演化可分為四期。第一期(14ka前):於末次冰盛期陸棚出露於地表形成侵蝕面;第二期(14ka-8ka):海進時期隨海水面快速上升,研究區域轉變為河口及濱海環境,沉積物向上加積;第三期(8ka-4.5ka):海水面上升減緩,進入高水位時期,由濱海轉變為淺海環境,海峽的物理海洋環境也趨於穩定,開始接收自陸源向海進積之沉積物;第四期(4.5ka至今):穩定高水位時期,沉積物在潮流作用下於近岸地區形成許多沙波及沙脊,且在海床下2至15公尺深處,形成沙波基底面。本研究透過多重地球物理方法,分析臺灣海峽近岸區的沙波地形特徵、變遷方式並提出其地層環境之演化模式,希望對於後續海事工程發展能有所幫助,但結果也顯示沙波變遷呈現複雜地非線性變化,若能再配合更多次的觀測及收集小尺度的流場資料,相信將能對臺灣海峽的沙波特徵與變化有更進一步的瞭解。zh_TW
dc.description.abstractSubmarine sand waves are common bedforms observed in shallow or nearshore seas, they are formed under the interaction of tidal flow and non-cohesive deposits, and can migrate with the tidal current. As the migration of sand waves may cause hazard to offshore installations, it has been an important study issue. Previous studies show that a large number of sand waves have been developed in the Taiwan Strait, induced by the high sediment supply and tidal effects. However, due to lacking of high-resolution and repeated geophysical surveys, detailed characteristics and migrating features of the sand waves in Taiwan Strait were poorly understood. In this study, we use high-resolution bathymetry data and seismic reflection profile data, combined with other geophysical and geological information to investigate the characteristics, migration and evolution of sand waves in the nearshore area of Central Taiwan Strait. The results of bedform analyses show that in the study area, the wavelengths of sand waves range from 35 to 295 m, their heights range from 0.6 to 8.2 m, the migration distance can be up to 95 m in 2.5 years, and the seafloor elevation difference can be up to 6.7 m. In terms of the bedform changes, there are migrations orthogonal to the sand wave ridge crests, and also growth and stretching of the sand wave ridges. From repeated mapping data at various time-scales, the migration rate was 0.76 m/month from a 2.5-year period observation, but from the 2-month period observation data, the migration rate was 10.31 m/month. Based on the analyses of sequence stratigraphy and seismic stratigraphy, we propose that there are four stages in the depositional environment evolution of the study area. In the first stage (before 14 ka), the continental shelf was initially terrestrial under fluvial erosion in the Last Glacial Maximum. In the second stage (14 ka-8 ka), land became inundated as the sea level rise, and transitioned from shoreface to offshore. In the third stage (8ka-4.5ka), the rising of sea level came to a pause, tidal environment of the strait became stabilized, and sediment started to prograde seaward to the shallow marine environment. In the fourth stage (4.5ka to present), accumulated sediment that aggraded at the river mouth formed the river delta and then prograded seaward, which induced the formation of sand ridges and sand waves in nearshore area, and the modern sand waves are proposed to develop and migrate with the sand ridges in this stage. By combining the analyses of seafloor topography and sediment stratigraphy, we characterize the morphology, migration patterns and the complexity of sand wave bedform changes in the Taiwan Strait, and suggest more intensive and smaller scales of physical oceanographic observations are needed to assist marine engineering in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:46:23Z (GMT). No. of bitstreams: 1
U0001-1408202021471700.pdf: 19285248 bytes, checksum: 4b48dbe0f2b254ac12c55c45930705e4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究區域與方法 2
1.3 研究目的 3
第二章 前人研究與區域背景 5
2.1 沙波研究發展 5
2.2 沙波探測 6
2.3 沙波形貌 11
2.4 沙波遷移 18
2.5 臺灣海峽區域背景 20
2.6 臺灣海峽沙波研究 25
第三章 研究資料與方法 28
3.1資料種類與分布 28
3.1.1 水深資料 28
3.1.2 震測資料 31
3.1.3 海流資料 33
3.2 水深資料分析方法 38
3.2.1 沙波形貌量化 38
3.2.2 沙波動態偵測 43
3.3 震測資料處理與分析 48
3.3.1 震測資料處理 48
3.3.2 震測資料分析與解釋 52
第四章 研究結果 57
4.1 地形分析 57
4.1.1 區域地形展示 57
4.1.2 沙波形貌概述 68
4.1.3 沙波空間分布 71
4.1.4 沙波移動分析 77
4.1.5 沙波於不同時間尺度下之移動 86
4.2 地層分析 91
4.2.1 震測層序分析 91
4.2.2 震測剖面解釋 95
4.2.3 沙波基底面與厚度 98
第五章 討論 104
5.1 沙波特徵於空間分布上之差異 104
5.2 沙波移動隨時間之差異及其影響因素 105
5.3 沉積物傳輸與沙脊之關係 106
5.4 沙波環境之地層演化 113
第六章 結論 115
第七章 引用文獻 118
附錄 128
dc.language.isozh-TW
dc.title中臺灣海峽近岸區沙波的遷移及演化zh_TW
dc.titleSand Wave Migration and Evolution in Nearshore Area of Central Taiwan Straiten
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉家瑄(Char-Shine Liu),蘇志杰(Chih-Chieh Su),黃千芬(Chen-Fen Huang),黃誌川(Jr-Chuan Huang)
dc.subject.keyword臺灣海峽,沙波,多音束聲納,反射震測,沉積環境,zh_TW
dc.subject.keywordTaiwan Strait,sand wave,multibeam echosounder,reflection seismic,sedimentary environment,en
dc.relation.page138
dc.identifier.doi10.6342/NTU202003491
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202021471700.pdf
  目前未授權公開取用
18.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved