請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6771完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林長平(Chan-Pin Lin) | |
| dc.contributor.author | Chao-Feng Tai | en |
| dc.contributor.author | 戴肇鋒 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:17:48Z | - |
| dc.date.available | 2013-05-18 | |
| dc.date.available | 2021-05-17T09:17:48Z | - |
| dc.date.copyright | 2012-10-12 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-11 | |
| dc.identifier.citation | Agrios, G. N. 2005. Plant disease caused by Mollicutes: phytoplasmas and spiroplasmas. 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
Ahmad, J. N., and Eveillard, S. 2011. Study of the expression of defense related protein genes in stolbur C and stolbur PO phytoplasma-infected tomato. Bulletin of insectology 64: S159-S160. Carraro, L., Ermacora, P., Loi, N., and Osler, R. 2004. The recovery phenomenon in apple proliferation infected apple trees. J. Plant Pathol. 86(2): 141-146. Chen, W. Y., and Lin, C. P. 2011. Characterization of Catharanthus roseus genes regulated differentially by peanut witches’ broom phytoplasma infection. J. Phytopathol. 159: 505-510. Chen, Z., Agnew, J. L., Cohen, J. D., Shan, L., Sheen, J., and Kunkel, B. N. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. U. S. A. 104(50): 20131-20136. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4): 803-814. Cristensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10(11): 526-535. Ćurković-Perica, M. 2008. Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J. Appl. Microbiol. 105(6): 1826-1834. De Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., Buchala, A. J., Metraux, J. P., Van Loon, L. C., Dicke, M., and Pieterse, C. M. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact. 18(9): 923-937. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259-266. Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209. Eckardt, N. A. 2001. Auxin and the power of the proteasome in plants. Plant Cell. 13(10): 2161-2163. Eschrich, W., and Currier, H. B. 1964. Identification of callose by its diachrome and fluorochrome reactions. Biotach. Histochem. 39(5): 303-307. Feys, B. J. F., Benedetti, C. E., Penfold, C. N., and Turner, J. G. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6(5): 751-759. Gamalero, E., D’Amelio, R., Musso, C., Cantamessa, S., Pivato, B., D’Agostino, G., Duan, J., Marzachi, C., and Berta, G. I. 2010. Effects of Pseudomonas putida S1Pf1Rif against chrysanthemum yellows phytoplasma infection. Phytopathology 100(8): 805-813. Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9(4): 403-423. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from phytopathogenic bacterium. Proc. Natl. Acad. Sci. U. S. A. 106(15): 6416-6421. Howe, G. A. 2004. Jasmonates as signals in the wound response. J. Plant Growth Regul. 23(3): 223-237. Hren, M., Nikolić, P., Rotter, A., Blejec, A., Terrier, N., Ravnikar, M., Dermastia, M., and Gruden, K. 2009. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10:460. IRPCM Phytoplasna/Spiroplasma Working Team-Phytoplasma Taxpnomy Group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54(Pt 4): 1245-1255. Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33: 267-275 Jain, M., Tyagi, A. K., and Khurana, J. P. 2006. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Gemonics. 88(3): 360-371. Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444(7117): 323-329. Joseph, E. M., Venkatesan, G. S., Jeremy, L. B., and Tonja, W. F. 2011. Effects of temperature on ‘Candidatus Liberibacter solanacearum’ and zebra chip potato disease symptom development. Plant Dis. 96(1): 18-23. Jung, H. Y., Sawayanagi, T., Wongkaew, P., Kakizawa, S., Wei, W., Oshima, K., Miyata, S., Ugaki, M., Hibi, T.,and Namba, S. 2003. 'Candidatus Phytoplasma oryzae', a novel phytoplasma taxon associated with rice yellow dwarf disease. Int J Syst Evol Microbiol. 53(Pt 6): 1925-9. Katagiri, F. 2004. A global view of defense gene expression regulation – a highly interconnected signaling network. Curr. Opin. Plant Biol. 7(5): 506-511. Kazan, K., and Manners, J. M. 2009. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14(7): 373-382 . Knauss, S., Rohrmeier, T., and Lehle, L. 2003. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J. Biol. Chem. 278(26): 23936-23943. Koh, E. J., Zhou, L., Williams, D. S., Park, J., Ding, N., Duan, Y. P., and Kang, B. H. 2011. Callose deposition in the phloem plasmadesmata and inhibition of phloem transport in citrus leaves infected with ‘Candidatus Liberibacter asiaticus’. Protoplasma 249(3): 687-697. Kozina, A., Ježic, M., Tkalec, M., Kozina, B., Osrečak, M., and Ćurković-Perica, M. 2011. Effect of indole-3-butyric acid on the recovery of phytoplasma-infected grapevine. Bulletin of Insectology. 64: S195-S196. Kunkel, B. N., and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5(4): 325-331. Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255. Leljak-Levanić, D., Ježić, M., Cesar, V., Luding-Muller, J., Lepeduš, H., Mladinić, M., Katić, M., and Ćurković-Perika, M. 2010. Biochemical and epigenetic changes in phytoplasma-recovered periwinkle after indole-3-butyric acid treatment. J. Appl. Microbiol. 109(6): 2069-2078 Li, J., Brader, G., and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2): 319-331 Liu, H. L., Chen, C. C., and Lin, C. P. 2007. Detection and identification of the phytoplasma associated with pear decline in Taiwan. Eur. J. Plant Pathol. 117: 281-291. Llorente, F., Muskett, P., Sanchez-Vallet, A., Lopez, G., Ramos, B., Sanchez-Rodriguez, C., Jorda, L., Parker, J., and Molina, A. 2008. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol. Plant 1(3): 496-509. Loake, G., and Grant, M. 2007. Salicylic acid in plant defence-the players and protagonist. Curr. Opin. Plant Biol. 10(5): 466-472. Margaria, P., and Palmano, S. 2011. Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence doree phytoplasma infection. Proteomics 11(2): 212-224. Messiaen, C. M., and Marrou J. 1967. Comparaison de la virulence sur diverses solanacees de trois souches de stolbur et d’un virus attaquant la tomate. Etudes de virologie. Ann. Epiphyties 18: 173-178. Mocaitis, K., and Estelle, M. 2008. Auxin receptor and development: a new signaling paradigm. Annu. Rev. Cell. Dev. Biol. 24:55-80. Musetti, R., Paolacci, A. R., Ciaffi, M., Tanzarella, O. A., Polizzotto, R. Tbbaro, F., Mizzau, M., Ermacora, P., Badiani, M., and Osler, R. 2010. Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology 100(4): 390-399. Norman-Setterblad, C., Vidal, S., and Palva, E. T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe Interact. 13(4): 430-438. O’Mara, J., and Gast , K. L. B. 1993. Aster yellows. M1086, EP53 in: Commercial specialty cut flower production. Cooperative extension service, Manhattan, KS. Osler, R., Loi, N., Carraro, L., Ermacora, P., and Refatti, E. 2000. Recovery in plants affected by phytoplasmas. 589-592 in: Proc. 5th Congr. Eur. Found. For Plant Pathol. Sociata Italiana di Patologia Vegetale, ed. Taormina, Italy. Padmanabhan, M. S., Goregaoker, S. P., Golem, S., Shiferaw, H., and Culver, J. N. 2005. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 79(4): 2549-2558. Padmanabhan, M. S., Kramer, S. R., Wang, X., and Culver, J. N. 2008. TMV-Aux/IAA interactions: re[rpgramming the auxin response pathway to enhance virus infection. J. Virol. 82(5): 2477-2485. Padmanabhan, M. S., Shiferaw, H., and Culver, J. N. 2006. The Tobacco nosaic virus replicase protein disrupts the localization and function of interaction Aux/IAA proteins. Mol. Plant Microbe Interact. 19(8): 864-873. Pieterse, C. M. J., and Dicke, M. 2007. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 12(12): 564-569. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., and Van Wees. S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5(5): 308-316. Pieterse, C. M. J., and Van Loon, L. C. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7(4): 456-464. Pitzschke, A., and Hirt, H. 2010. New insights into an old story: Agrobacterium induced tumour formation in plants by plant transformation. EMBO J. 29(6): 1021-1032. Reymond, P., and Farmer, E. E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1(5): 404-411. Sanchez-Rojo, S., Lopez-Delgado, A., Mora-Herrera, M. E., Almeyda-Leon, H. I., Zavaleta-Mancera, H. A., and Espinosa-Victoria, D. 2011. Salicylic acid protects potato plants from phytoplasma-associated stress and improves tuber photosynthate assimilation. Am. J. Pot. Res. 88(2): 175-183. Seemuller, E. 1988. Colonization pattern of mycoplasmalike organisms in trees affected by apple proliferation and pear decline. 179-192 in: Tree mycoplasmas and mycoplasma diseases. C. Hiruki ed. Te University of Alberta Press, Edmonton, Alberta, Canada. Su, Y. T., Chen, J. C., and Lin, C. P. 2011. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcription repression of flral organ identity genes. Mol. Plant Microbe Interact. 24(12): 1502-1512. Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., and Hogenhout, S. A. 2011a. Phytoplasna protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 108(48): E1254-E1263. Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., and Hogenhout, S. A. 2011b. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49:175-195. Swillens, S., Goffard, J. C., Marechal, Y., Kerchove, A., de Kerchove d’Exaerde, A., and El Housni, H. 2004. Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Res. 32(6): e56. Tiryaki, I., and Stawick, P. E. 2002. An Arabidopsis mutant defective in jasmonate response in allelic to the auxin-signaling mutant axr1. Plant Physiol. 103(2): 887-894. Van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Auun. Rev. Phytopathol. 36: 453-483. Van Wees, S. C. M., Van der Ent, S., and Pieterse, C. M. J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11(4): 443-448. Von Dahl, C. C., and Baldwin, I. T. 2007. Deciphering the role of ethylene in plant-herbivore interactions. J. Plant Growth Regul. 26(2): 201-209. Wang, D., Pajerowska-Mukhtar, K., Culler, A. H., and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17(20): 1784-1790. Walters, D., and Heil, M. 2007. Cost and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71: 3-17. Weintraub, P. G., and Beanland, L. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51: 91-111. Winnepenninckx, B., Backeljau, T., and De Wachter, R. 1993. Extraction of high molecular weight DNA from mollusks. Trends Genet. 9(12): 407. Wu, W., Ding, Y., Wei, W., Davis, R. E., Lee, I. M., Hammond, R. W., and Zhao, Y. 2012. Salicylic acid-mediated elicitation of tomato defence against infection by potato purple top phytoplasma. Ann. Appl. Biol. 161(1): 36-45. Xu, Y., Chang, P. L. C., Liu, D., Narasimhan, M. L. Kashchandra, G. R., Hasegawa, P. M., and Bressan, R. A. 1994. Plant defense genes are syngergistically induced by ethylene and methyl jasmonate. Plant Cell 6(8): 1077-1085. Yang, I. L. 1985. Host responses of peanut witches broom disease. Jour. Agric. Res. China. 34(4): 464-468. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6771 | - |
| dc.description.abstract | 植物菌質體 (phytoplasma) 可感染多種經濟作物,並於感病後常造成枝條增生 (proliferation)、矮化 (dwarfism)、簇葉 (witches’ broom) 等病徵,造成農業重大損失。近來已發現植物菌質體之致病蛋白 TENGU 與病徵之誘發相關,且 TENGU 之表現亦使生長素之相關基因如 Aux/IAAs、 SAURs (small Auxin-up RNAs)、GH3s 之表現量下降。又生長素 (auxin) 已證實與植物防禦之相關荷爾蒙如水楊酸 (salicylic acid)、茉莉酸 (jasmonic acid)、乙烯 (ethylene) 互有交互作用,進而調控植物之抗病、感病路徑。另一方面,將感染植物菌質體之日日春枝條,培養於含有高量生長素之培養基中,也可有效使枝條病徵減緩,同時植物體內之菌量也有明顯減少,顯見生長素在植物與植物菌質體交互作用上或在植物之抗性表現上扮演重要角色。本研究以日日春葉片黃化病(periwinkle leaf yellowing, PLY) 植物菌質體為病原、日日春為寄主植物進行研究,試圖了解生長素、植物寄主與植物菌質體三者間交互作用之機制,以期找出對抗植物菌質體病害之新策略。為了釐清前人研究中,生長素訊息傳導相關基因表現量之下降,是否導致植物罹病後對生長素之感受性改變,首先,在本研究中檢查了此類基因於感病後之表現量變化,結果發現生長素訊息傳導相關基因 IAA9、IAA14、IAA14-2、IAA19 於罹病後表現下降,而 IAA8、SAUR5 表現上升,又 IAA3、IAA4、IAA12 之表現量無顯著變化。然而我們亦發現其中僅 IAA3、IAA4、IAA12、IAA19、SAUR5 受人工合成生長素 NAA (napthaleneacetic acid) 之誘導,而僅有 SAUR5 之表現於罹病株中較健株為低,故推論植物菌質體之感染會干擾寄主體內生長素訊息傳導相關基因表現;同時也發現在以生長素處理之罹病株中, IAAs 等基因受誘導之表現情形較健株為高,而 SAUR5 在罹病株中被誘導之表現則與健株相比稍低,即無法被誘導之情形。本研究進一步觀察植物罹病後,若直接處理生長素是否可造成病徵減緩,故於植物嫁接 PLY 植物菌質體兩周後,以噴灑方式處理高濃度之 NAA (25 ppm),定時觀察植株病害發展。結果發現以 NAA 處理後之 PLY 罹病株,可使未顯現病徵之枝條維持健康,而且在處理 NAA 之罹病株上同時也發現出現較多之健康枝條,於其中無法針測到植物菌質體之存在,但在原已顯現病徵之發病部位的花部病徵有加速發展之情形,而且其病枝含有較高之菌量;此外,在觀察以 NAA 處裡後之罹病株病枝中水楊酸、茉莉酸、乙烯相關基因表現量時,亦發現水楊酸相關之 PR1 及 Pr1b 等系統性抗病相關基因表現受抑制,而於誘導性抗病相關基因之表現中,LOX2 在處理 NAA 前後無差別, AOC 於處理後表現量未上升,而 ACO4 於處理後表現量上升。將 PLY 植物菌質體嫁接至以生長素做前處理之日日春後,發現其較未處理生長素之植株不易罹病,顯見生長素有助於植株健康部位之抗性提升。前人研究顯示胼胝體 (callose) 之累積已被發現與植物限制病原擴散有關,因此本研究亦對處理 NAA 是否造成植株胼胝體沉積之變化進行觀察,結果發現處理 NAA 後,健株有胼胝體之產生,如此或可將處理 NAA 後罹病株含有較多建康枝條之現象,推論乃導因於植物菌質體在移至新枝條之情形受阻。本研究對植物與植物菌質體間之交互作用做進一步之了解,並試圖提出生長素對於植物及植物菌質體間之交互作用影響之可能模式。 | zh_TW |
| dc.description.abstract | Phytoplasmas, wall-less obligate bacterial pathogens, cause more than one thousand diseases in hundreds of economical crops. Because their disease symptoms are often associated with plant developments, phytohormone imbalance caused by the pathogen was proposed to be the main cause of the symptoms. Recently, a symptom inducing effector, TENGU, was found to suppress expressions of several auxin-related genes. Symptoms caused by phytoplasma can be relieved by treatment of high concentration of auxin in an in vitro culture condition. Therefore, in this study, we aimed to realize detail mechanisms of auxin associated defense responses in periwinkles against periwinkle leaf yellowing (PLY) phytoplasma. Consisting with previous finding, expressions of several auxin-related genes were down-regulated after PLY-phytoplasma infection. However, genes with no change and with up-regulated expressions were also observed. Surprisingly, genes examined generally more strongly responded to auxin treatment with SAUR5 the lone gene showing reduced sensitivity to auxin in diseased plants. After NAA treatment, symptom developments were accelerated in the inoculated shoots while more healthy shoots with no phytoplasma detected were observed. The accelerated symptom developments were associated with early accumulations of phytoplasmas, and suppression of peak induction on Pr1 and Pr1b. Genes encoding potential JA and ET biosynthesis key enzymes were also analyzed and no conclusive results for involvement of JA biosynthesis in the accelerated symptoms were observed, while a strong induction of ACO4, a key ET biosynthesis gene, was only found in diseased shoots treated with NAA. After auxin pre-treatment, periwinkles were more resistant to phytoplasma infection, showing that auxin promote the resistance to phytoplasma in healthy part. Since callose deposition is a basal defense to prevent pathogen spreading, callose deposition were examined and an increased level of callose deposition was observed in healthy plants treated with auxin. The association of reduction in disease rates in callose containing healthy shoots may infer that it may help preventing phytoplasma infection. The study provided clues of interactions of plant-microbe. Scheme of the hypothetic working model among auxin, host plant and phytoplasma was proposed in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:17:48Z (GMT). No. of bitstreams: 1 ntu-101-R99633014-1.pdf: 2506303 bytes, checksum: b4663d31dea6de3c76d5141a3a17de98 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………………………………………………………II
致謝……………………………………………………………………………………………………………………………………………III 中文摘要…………………………………………………………………………………………………………………………………………V Abstract…………………………………………………………………………………………………………………………………VII Abbreviations………………………………………………………………………………………………………………………IX Contents…………………………………………………………………………………………………………………………………X 中文前言………………………………………………………………………………………………………………………………………1 Introduction………………………………………………………………………………………………………………………6 Materials and methods………………………………………………………………………………………………14 Plant materials and phytoplasma inoculation……………………………………………………………………………………………………14 Chemical treatments………………………………………………………………………………14 RNA isolation and cDNA synthesis……………………………………………15 Quantitative reverse-transcription PCR…………………………………………………………………………………………………………………………16 Measurement of phytoplasma concentration………………………………………………………………………………………………16 Callose staining………………………………………………………………………………………17 Results……………………………………………………………………………………………………………………………………19 Phytoplasma infection did not reduce overall auxin sensitivity of periwinkles……………………………………………………………19 Auxin accelerated symptom developments on PLY phytoplasma-infected shoots…………………………………………………………21 Differential expressions of phytohormone-regulated genes between disease plants with or without auxin treatments………………………………………………………………………………………………………22 Auxin treatment on PLY phytoplasma-infected plants retarded the transmission of phytoplasmas into neighboring shoots…………………………………………………………………………………24 Auxin pre-treatment enhanced plant defense against PLY phytoplasma infection………………………………………………………………25 Callose deposition changed after the treatment of auxin……………………………………………………………………………………………………………………26 Discussion……………………………………………………………………………………………………………………………28 References……………………………………………………………………………………………………………………………35 Table and figures…………………………………………………………………………………………………………46 Supplementary figures………………………………………………………………………………………………61 | |
| dc.language.iso | zh-TW | |
| dc.title | 感染日日春葉片黃化病植物菌質體之日日春以生長素處理後其病害發展之研究 | zh_TW |
| dc.title | The Effects of Auxin Treatment on Disease Development in
Periwinkle Leaf Yellowing Phytoplasma-Infected Periwinkle Plants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳仁治(Jen-Chih Chen) | |
| dc.contributor.oralexamcommittee | 曾國欽,郭志鴻,洪挺軒 | |
| dc.subject.keyword | 植物菌質體,日日春,生長素,抗病反應, | zh_TW |
| dc.subject.keyword | phytoplasma,periwinkle,auxin,periwinkle leaf yellowing,plant defense, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-10-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
