Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉光勝
dc.contributor.authorHung-Che Linen
dc.contributor.author林弘哲zh_TW
dc.date.accessioned2021-06-17T01:44:53Z-
dc.date.available2019-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. 邱乾順, 廖盈淑, 廖春杏, 曹其森, 郭榮哲. 2015. 國內沙門氏菌感染症監測與流行現況. 疫情報導 31:235-243.
2. Aota S, Gojobori T, Ishibashi F, Maruyama T, Ikemura T. 1988. Codon usage tabulated from the GenBank Genetic Sequence Data. Nucleic Acids Res 16 Suppl:r315-402.
3. Bahrami B, Macfarlane S, Macfarlane GT. 2011. Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J Appl Microbiol 110:353-363.
4. Bakowski MA, Cirulis JT, Brown NF, Finlay BB, Brumell JH. 2007. SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9:2839-2855.
5. Barak JD, Jahn CE, Gibson DL, Charkowski AO. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact 20:1083-1091.
6. Baumler A, Fang FC. 2013. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3:a010041.
7. Baumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F. 1996. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61-68.
8. Baumler AJ, Tsolis RM, Heffron F. 1996. The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer's patches. Proc Natl Acad Sci U S A 93:279-283.
9. Boddicker JD, Ledeboer NA, Jagnow J, Jones BD, Clegg S. 2002. Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255-1265.
10. Centers for Disease Control and Prevention. 2011. National Salmonella surveillance overview. Atlanta: US Department of Health and Human Services, CDC.
11. Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. 2012. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. Langmuir 28:7428-7435.
12. Chiu TH, Pang JC, Hwang WZ, Tsen HY. 2005. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene. J Food Prot 68:1575-1580.
13. Clegg S, Hancox LS, Yeh KS. 1996. Salmonella typhimurium fimbrial phase variation and FimA expression. J Bacteriol 178:542-545.
14. Clegg S, Hughes KT. 2002. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184:1209-1213.
15. Clegg S, Swenson DL. 1994. Salmonella fimbriae. In: Klemm P, editor. Fimbriae: adhesion, genetics, biogenesis, and vaccines. Boca Raton : CRC Press:105–114.
16. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW. 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773-4781.
17. Coppens F, Iyyathurai J, Ruer S, Fioravanti A, Taganna J, Vereecke L, De Greve H, Remaut H. 2015. Structural and adhesive properties of the long polar fimbriae protein LpfD from adherent-invasive Escherichia coli. Acta Crystallogr D Biol Crystallogr 71:1615-1626.
18. Crost C, Harel J, Berthiaume F, Garrivier A, Tessier MC, Rakotoarivonina H, Martin C. 2004. Influence of environmental cues on transcriptional regulation of foo and clp coding for F165(1) and CS31A adhesins in Escherichia coli. Res Microbiol 155:475-482.
19. Csonka LN. 1988. Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. J Bacteriol 170:2374-2378.
20. Darwin KH, Miller VL. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405-428.
21. De Oliveira DC, Fernandes Junior A, Kaneno R, Silva MG, Araujo Junior JP, Silva NC, Rall VL. 2014. Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog Dis 11:478-483.
22. Duguid JP. 1959. Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21:271-286.
23. Duguid JP, Anderson ES, Campbell I. 1966. Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 92:107-138.
24. Dwyer BE, Newton KL, Kisiela D, Sokurenko EV, Clegg S. 2011. Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. Microbiology 157:3162-3171.
25. Ellermeier CD, Slauch JM. 2006. The genus Salmonella, p 123-158, The Prokaryotes. Springer.
26. Fabrega A, Vila J. 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308-341.
27. Farfan MJ, Cantero L, Vergara A, Vidal R, Torres AG. 2013. The long polar fimbriae of STEC O157:H7 induce expression of pro-inflammatory markers by intestinal epithelial cells. Vet Immunol Immunopathol 152:126-131.
28. Freter R, Jones GW. 1983. Models for studying the role of bacterial attachment in virulence and pathogenesis. Rev Infect Dis 5 Suppl 4:S647-658.
29. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O'Neil D A, Macfarlane GT. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242-249.
30. Gally DL, Bogan JA, Eisenstein BI, Blomfield IC. 1993. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175:6186-6193.
31. Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G. 2013. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496:243-246.
32. Gerber BR, Asakura S, Oosawa F. 1973. Effect of temperature on the in vitro assembly of bacterial flagella. J Mol Biol 74:467-487.
33. Grzymajlo K, Ugorski M, Kolenda R, Kedzierska A, Kuzminska-Bajor M, Wieliczko A. 2013. FimH adhesin from host unrestricted Salmonella Enteritidis binds to different glycoprotein ligands expressed by enterocytes from sheep, pig and cattle than FimH adhesins from host restricted Salmonella Abortus-ovis, Salmonella Choleraesuis and Salmonella Dublin. Vet Microbiol 166:550-557.
34. Guo A, Cao S, Tu L, Chen P, Zhang C, Jia A, Yang W, Liu Z, Chen H, Schifferli DM. 2009. FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. Microbiology 155:1623-1633.
35. Harel J, Martin C. 1999. Virulence gene regulation in pathogenic Escherichia coli. Vet Res 30:131-155.
36. Holden NJ, Totsika M, Mahler E, Roe AJ, Catherwood K, Lindner K, Dobrindt U, Gally DL. 2006. Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 152:1143-1153.
37. Holden NJ, Uhlin BE, Gally DL. 2001. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 42:319-330.
38. Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038-2049.
39. Kedrov A, Kusters I, Driessen AJ. 2013. Single-molecule studies of bacterial protein translocation. Biochemistry 52:6740-6754.
40. Keestra AM, Winter MG, Klein-Douwel D, Xavier MN, Winter SE, Kim A, Tsolis RM, Baumler AJ. 2011. A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. MBio 2.
41. Kisiela D, Sapeta A, Kuczkowski M, Stefaniak T, Wieliczko A, Ugorski M. 2005. Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187-6190.
42. Kisiela DI, Kramer JJ, Tchesnokova V, Aprikian P, Yarov-Yarovoy V, Clegg S, Sokurenko EV. 2011. Allosteric catch bond properties of the FimH adhesin from Salmonella enterica serovar Typhimurium. J Biol Chem 286:38136-38147.
43. Kuwahara H, Myers CJ, Samoilov MS. 2010. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction. PLoS Comput Biol 6:e1000723.
44. Kuzminska-Bajor M, Grzymajlo K, Ugorski M. 2015. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion. Front Microbiol 6:276.
45. Kuzminska-Bajor M, Kuczkowski M, Grzymajlo K, Wojciech L, Sabat M, Kisiela D, Wieliczko A, Ugorski M. 2012. Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Vet Microbiol 158:205-210.
46. Le Minor L, Veron M, Popoff M. 1982. A proposal for Salmonella nomenclature. Ann Microbiol (Paris) 133:245-254.
47. Le Minor L, Veron M, Popoff M. 1982. The taxonomy of Salmonella. Ann Microbiol (Paris) 133:223-243.
48. Ledeboer NA, Frye JG, McClelland M, Jones BD. 2006. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74:3156-3169.
49. Lee AK, Detweiler CS, Falkow S. 2000. OmpR regulates the two-component System SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 182:771-781.
50. Lee CA, Yeh KS. 2016. The non-fimbriate phenotype is predominant among Salmonella enterica serovar Choleraesuis from swine and those non-fimbriate strains possess distinct amino acid variations in FimH. PLoS One 11:e0151126.
51. Lianou A, Koutsoumanis KP. 2012. Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Int J Food Microbiol 160:171-178.
52. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. 2013. Clinical Veterinary Microbiology. Wolfe:226-234.
53. Marshall J, Rossez Y, Mainda G, Gally DL, Daniell TJ, Holden NJ. 2016. Alternate thermoregulation and functional binding of Escherichia coli type 1 fimbriae in environmental and animal isolates. FEMS Microbiol Lett 363.
54. Martinez LC, Banda MM, Fernandez-Mora M, Santana FJ, Bustamante VH. 2014. HilD induces expression of Salmonella pathogenicity island 2 genes by displacing the global negative regulator H-NS from ssrAB. J Bacteriol 196:3746-3755.
55. McFarland KA, Lucchini S, Hinton JC, Dorman CJ. 2008. The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene. J Bacteriol 190:602-612.
56. McGhie EJ, Hayward RD, Koronakis V. 2001. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131-2139.
57. Mian MF, Lauzon NM, Andrews DW, Lichty BD, Ashkar AA. 2010. FimH can directly activate human and murine natural killer cells via TLR4. Mol Ther 18:1379-1388.
58. Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S. 2000. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med 192:249-258.
59. Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R, Gill N, Ashkar AA. 2008. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 181:6702-6706.
60. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. 2006. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236-238.
61. Nuccio SP, Chessa D, Weening EH, Raffatellu M, Clegg S, Baumler AJ. 2007. SIMPLE approach for isolating mutants expressing fimbriae. Appl Environ Microbiol 73:4455-4462.
62. Ogasawara H, Yamamoto K, Ishihama A. 2011. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193:2587-2597.
63. Old DC, Corneil I, Gibson LF, Thomson AD, Duguid JP. 1968. Fimbriation, pellicle formation and the amount of growth of Salmonellas in broth. J Gen Microbiol 51:1-16.
64. Old DC, Duguid JP. 1970. Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 103:447-456.
65. Old DC, Payne SB. 1971. Antigens of the type-2 fimbriae of Salmonellae: 'cross-reacting material' (CRM) of type-1 fimbriae. J Med Microbiol 4:215-225.
66. Oldenkamp EP. 2004. Predecessors: veterinarians from earlier times (55). Daniel Elmer Salmon (1850-1914). Tijdschr Diergeneeskd 129:554-555.
67. Olsen PB, Schembri MA, Gally DL, Klemm P. 1998. Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 162:17-23.
68. Ong CL, Ulett GC, Mabbett AN, Beatson SA, Webb RI, Monaghan W, Nimmo GR, Looke DF, McEwan AG, Schembri MA. 2008. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 190:1054-1063.
69. Perez JC, Latifi T, Groisman EA. 2008. Overcoming H-NS-mediated transcriptional silencing of horizontally acquired genes by the PhoP and SlyA proteins in Salmonella enterica. J Biol Chem 283:10773-10783.
70. Quadling C, Stocker BA. 1962. An environmentally-induced transition from the flagellated to the non-flagellated state in Salmonella typhimurium: the fate of parental flagella at cell division. J Gen Microbiol 28:257-270.
71. Queipo-Ortuno MI, De Dios Colmenero J, Macias M, Bravo MJ, Morata P. 2008. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 15:293-296.
72. Rabsch W. 2002. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infection and Immunity 70:2249-2255.
73. Reed WM, Olander HJ, Thacker HL. 1986. Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res 47:75-83.
74. Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, Waksman G. 2006. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol Cell 22:831-842.
75. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361-367.
76. Rogers LD, Brown NF, Fang Y, Pelech S, Foster LJ. 2011. Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci Signal 4:rs9.
77. Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722-731.
78. Romling U, Sierralta WD, Eriksson K, Normark S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249-264.
79. Salcedo SP, Holden DW. 2003. SseG, a virulence protein that targets Salmonella to the Golgi network. Embo j 22:5003-5014.
80. Sansonetti PJ. 2004. War and peace at mucosal surfaces. Nat Rev Immunol 4:953-964.
81. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ. 2001. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335-1344.
82. Shah DH, Casavant C, Hawley Q, Addwebi T, Call DR, Guard J. 2012. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen. Foodborne Pathog Dis 9:258-264.
83. Shi M, Zhang Y, Liu L, Zhang T, Han F, Cleveland J, Wang F, McKeehan WL, Li Y, Zhang D. 2016. MAP1S protein regulates the phagocytosis of bacteria and toll-like receptor (TLR) signaling. J Biol Chem 291:1243-1250.
84. Simm R, Ahmad I, Rhen M, Le Guyon S, Romling U. 2014. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 9:1261-1282.
85. Sokurenko EV, Vogel V, Thomas WE. 2008. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 4:314-323.
86. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793-808.
87. Staley TE, Wilson IB. 1983. Soluble pig intestinal cell membrane components with affinities for E. coli K88+ antigen. Mol Cell Biochem 52:177-189.
88. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. 2012. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 45:502-531.
89. Strom MS, Lory S. 1993. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565-596.
90. Swenson DL, Kim KJ, Six EW, Clegg S. 1994. The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. Mol Gen Genet 244:216-218.
91. Tamayo R, Pratt JT, Camilli A. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131-148.
92. Tinker JK, Clegg S. 2000. Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 68:3305-3313.
93. Tinker JK, Clegg S. 2001. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 40:757-768.
94. Tinker JK, Hancox LS, Clegg S. 2001. FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 183:435-442.
95. Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ. 1999. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67:6385-6393.
96. Waksman G, Hultgren SJ. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765-774.
97. Walker SL, Sojka M, Dibb-Fuller M, Woodward MJ. 1999. Effect of pH, temperature and surface contact on the elaboration of fimbriae and flagella by Salmonella serotype Enteritidis. J Med Microbiol 48:253-261.
98. Walthers D, Carroll RK, Navarre WW, Libby SJ, Fang FC, Kenney LJ. 2007. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol Microbiol 65:477-493.
99. Walthers D, Li Y, Liu Y, Anand G, Yan J, Kenney LJ. 2011. Salmonella enterica response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription. J Biol Chem 286:1895-1902.
100. Wang H, Huang Y, Wu S, Li Y, Ye Y, Zheng Y, Huang R. 2014. Extracellular DNA inhibits Salmonella enterica Serovar Typhimurium and S. enterica Serovar Typhi biofilm development on abiotic surfaces. Curr Microbiol 68:262-268.
101. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS. 2014. FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 169:496-503.
102. Wang KC, Hsu YH, Huang YN, Yeh KS. 2012. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 12:111.
103. Weill F-XG, P. A. D. 2007. Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella.
104. Whitchurch CB, Mattick JS. 1994. Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 13:1079-1091.
105. Wood RL, Pospischil A, Rose R. 1989. Distribution of persistent Salmonella typhimurium infection in internal organs of swine. Am J Vet Res 50:1015-1021.
106. Yeh KS, Hancox LS, Clegg S. 1995. Construction and characterization of a fimZ mutant of Salmonella typhimurium. J Bacteriol 177:6861-6865.
107. Yeh KS, Tinker JK, Clegg S. 2002. FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 46:1-10.
108. Yue M, Rankin SC, Blanchet RT, Nulton JD, Edwards RA, Schifferli DM. 2012. Diversification of the Salmonella fimbriae: A model of macro- and microevolution. PLoS ONE 7:e38596.
109. Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Romling U. 2010. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol 77:771-786.
110. Zeiner SA, Dwyer BE, Clegg S. 2012. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 80:3289-3296.
111. Zeiner SA, Dwyer BE, Clegg S. 2013. FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun 81:4453-4460.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67700-
dc.description.abstract線毛是位於細菌外膜上毛髮樣的蛋白結構物,對於細菌吸附於宿主腸上皮細胞上扮演重要的角色。在公共衛生所關注的食源性病原菌沙門氏菌,於菌體表面普遍具有第一型線毛結構,此線毛對於甘露醣具有專一性的結合能力。根據過去文獻中曾提及,有高達80%的沙門氏菌分離株具有第一型線毛的構造,但對於沙門氏菌與歸屬於何種血清型,與細菌生物膜形成能力、吸附細胞能力強弱以及促發炎症反應之間連結的相關研究仍然有限。在本研究中透過酵母菌凝集試驗,篩選自不同來源共187個沙門氏菌臨床分離株,這些菌株涵蓋68種不同血清型,檢測細菌在固態培養基或靜態培養的液態培養基中產生第一型線毛的能力,並根據培養條件的不同,進一步區分為四種線毛表現相 (agar / broth:Fim+/Fim+, Fim-/Fim+、Fim+、Fim-或Fim- /Fim-)。我們的研究結果顯示,僅有S. Choleraesuis、S. Pullorum、S. Paratyphi A、S. Paratyphi B、S. Cerro、S. Dressau和S. Arizonae等在上述兩種培養條件下呈現線毛陰性反應 (Fim-)。而其他血清型包括S. Typhimurium、S. Enteritidis、S. Derby及S. Albany等,固態培養基或靜態培養的液兩種條件下,則有產生有第一型線毛的產生 (Fim+)。在結晶紫染色法中發現隸屬於Fim +組的沙門氏菌,在上述任一條件下皆具有的較強的生物膜形成能力。許多研究中表明宿主適應性血清型與廣泛宿主範圍血清型的沙門氏菌,對於腸上皮細胞結合能力的差異,可能與點突變造成fimH等位基因變異有關。我們研究中針對四種第一型線毛表現相代表菌株之fimH序列進行定序並比對,發現特定胺基酸殘基的取代與線毛的表現相並無顯著的關聯性。而在Caco-2腸上皮細胞株中使用S. Newport進行吸附試驗,證實第一型線毛與吸附能力具有正相關性,但在入侵試驗中則有相反的結果。推測第一型線毛的表現促使細菌在宿主中被排出,利於細菌在多樣性的環境中進行傳播。zh_TW
dc.description.abstractFimbriae are hair-like structures present on the outer membrane of bacteria and are implicated in adherence to the host epithelial cells. Type 1 fimbriae with the binding specificity to mannose residue is the most commonly found fimbrial type in Salmonella, a food borne pathogen with public health concern. While previous reports indicated that 80% of Salmonella isolates possessed type 1 fimbriae, information regarding the correlation between the specific serovars and the capacity to produce such fimbriae, biofilm, adhere to epithelial cells and the ability to trigger inflammatory response remains limited. In the present study, 187 Salmonella isolates from different sources comprising 68 serovars were screened by yeast agglutination test to detect the ability to produce type 1 fimbriae on agar or in static broth and classified into four type 1 fimbrial phenotypes (agar / broth: Fim+ / Fim+, Fim- / Fim+, Fim+ / Fim-, or Fim- / Fim-). Our findings revealed that S. Choleraesuis, S. Pullorum, S. Paratyphi A and B, S. Cerro, S. Dressau, and S. Arizonae were the only serovars that were fimbriae-negative (Fim-) in both culture conditions, while other serovars including S. Typhimurium, S. Enteritidis, S. Derby, and S. Albany, just to name a few, produced type 1 fimbriae (Fim+) when incubated either in static broth, solid agar or both culture conditions. The Salmonella in the Fim+ group in either condition demonstrated a stronger biofilm forming capacity determined by crystal violet staining method. Several lines of evidence suggested differential binding capacity of host-adapted and broad-host-range Salmonella serovars to intestinal cell may reside in allelic variants of fimH caused by point mutation. Herein fimH alleles from representative isolates of four different type 1 fimbrial phenotypes were sequenced and compared, nevertheless, connection between specific residual replacement and fimbrial phenotypes was not significant in our study. The adherence assay conferred by the S. Newport with different type 1 fimbrial phenotypes were investigated using Caco-2 epithelial cell line cells. The presence of type 1 fimbriae in S. Newport has been shown to correlate with adhesive capacity, but the invasion assay turned out just the opposite. We speculate that the expression of type 1 fimbriae will facilitate the shedding of bacteria to promote Salmonella transmission in the diverse milieu.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:44:53Z (GMT). No. of bitstreams: 1
ntu-106-R04629009-1.pdf: 1816188 bytes, checksum: dc90f0f8063e14a9d81cab2b68026438 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
目錄 vii
表次 x
圖次 xi
第ㄧ章 緒論 1
第二章 文獻回顧 3
第一節 沙門氏菌 3
第二節 沙門氏菌屬分類學 3
第三節 沙門氏菌血清型 4
第四節 沙門氏菌血清型與宿主專一性 4
第五節 沙門氏菌生化特性 5
第六節 沙門氏菌致病機制 6
第七節 第一型線毛 7
一、 沙門氏菌線毛分類 7
二、 第一型線毛基因調控 9
三、 Chaperone-Usher pathway之第一型線毛結構形成 11
四、 第一型線毛表現相 11
第八節 吸附素 (adhesin) FimH 12
第九節 沙門氏菌生物膜形成 13
第十節 研究目的 15
第三章 材料與方法 17
第一節 實驗菌株來源 17
第二節 第一型線毛鑑定 18
一、 酵母菌凝集試驗 19
二、 甘露醣凝集抑制試驗 19
第三節 細菌菌體DNA萃取 19
第四節 聚合酶鏈鎖反應 20
第五節 fimA mRNA表現 21
一、 細菌total RNA萃取 21
二、 反轉錄聚合酶鏈鎖反應 22
第六節 生物膜形成能力試驗 22
第七節 Caco-2細胞培養 23
一、 冷凍細胞活化 23
二、 細胞繼代培養 23
三、 細胞冷凍保存 24
四、 細胞計數 24
第八節 細菌吸附試驗 24
第九節 細菌入侵試驗 25
第十節 細菌誘發Caco-2細胞炎症反應 26
一、 細菌感染 26
二、 細胞RNA萃取 26
三、 測定細胞激素mRNA表現量 27
第四章 結果 28
第一節 第一型線毛表現相 28
第二節 第一型線毛表現與生物膜形成能力之關聯性 28
第三節 fimH基因定序 29
第四節 RT-PCR檢測Fim-菌株群fimA之mRNA表現 29
第五節 不同第一型線毛表現相沙門氏菌感染Caco-2細胞株 29
第五章 討論 32
第一節 第一型線毛表現能促進生物膜的形成 32
第二節 FimH吸附素中基因的單點突變對於第一型線毛表現相之間的關係 34
第三節 第一型線毛相對於Caco-2細胞吸附、入侵能力以及促發炎症反應之間的關係 35
第六章 參考文獻 39
表次
Table 1. Primers used in this study. 49
Table 2. Type 1 fimbrial phenotypes (agar/broth) of Salmonella grown at 37℃ (A) and 25℃ (B) screened by yeast agglutination test. 50
Table 3. Type 1 fimbrial phenotypes in different temperature. 51
Table 4. Phenotypic switching of type 1 fimbriae in different temperature. 53
Table 5. FimH protein sequence alignment in Fim- group strains. 54
Table 6. FimH protein sequence alignment of different fimbrial phenotypes in S. Newport. 56
圖次
Figure 1. The biofilm forming ability of Salmonella belonging to different O-antigen groups. 57
Figure 2. The biofilm formation ability of Salmonella belonging to different type 1 fimbrial phenotypes. 58
Figure 3. The biofilm forming ability of Salmonella belonging to different type 1 fimbrial phenotypes at room temperature and 37oC. 59
Figure 4. RT-PCR analysis for fimA expression from Salmonella of Fim- phenotype group. 60
Figure 5. Adherence of Fim+ and Fim- strains of S. Newport to Caco-2 cells. 61
Figure 6. Invasion of Fim+ and Fim- strains of S. Newport to Caco-2 cells. 62
Figure 7. RT-PCR analysis of cytokines expression from Caco-2 cells after infection with different fimbrial phenotypes of S. Newport. 63
dc.language.isozh-TW
dc.subject沙門氏菌zh_TW
dc.subject第一型線毛zh_TW
dc.subject生物膜zh_TW
dc.subject等位基因變異zh_TW
dc.subjectFimHzh_TW
dc.subjectbiofilmen
dc.subjectSalmonellaen
dc.subjecttype 1 fimbriaeen
dc.subjectFimHen
dc.subjectallelic variationen
dc.title比較不同第一型線毛相的沙門氏菌血清型在生物膜形成、吸附、入侵以及誘發炎症反應的能力zh_TW
dc.titleComparison of biofilm forming, adherence, invasion, and inflammation-inducing ability from Salmonella serovars with different type 1 fimbrial phenotypesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭致榮,王克銓
dc.subject.keyword沙門氏菌,第一型線毛,生物膜,等位基因變異,FimH,zh_TW
dc.subject.keywordSalmonella,type 1 fimbriae,biofilm,allelic variation,FimH,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201702062
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved