請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67698完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李達源(Dar-Yuan Lee) | |
| dc.contributor.author | Chih-Han Yu | en |
| dc.contributor.author | 於芷菡 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:44:45Z | - |
| dc.date.available | 2018-08-11 | |
| dc.date.copyright | 2017-08-11 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-27 | |
| dc.identifier.citation | 行政院環保署環境檢驗所。2002。土壤水分含量測定方法-重量法。 (NIEA S280.61C)
行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法。 (NIEA S321.63B)。 林家棻。1967。台灣省農田肥力測定。台灣省農業試驗所報告第二十八號。台灣省農業試驗所刊行。 林聖淇、趙方傑、黃文達、徐新貴、姚佩萱、張尊國。2008。關渡平原水田土壤砷物種與水稻植體濃度關係探討。農業工程學報 54(2)。 張尊國。2007。95 年度「台北市農地土壤重金屬砷含量調查及查證計畫」期末報告。台北市環保局。 Abedin, M.J., Cresser, M.S., Meharg, A.A., Feldmann, J., Cotter-Howells, J. 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 36 (5): 962–968. Abedin, M. J., Cotter-Howells, J., & Meharg, A. A. 2002. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil. 240(2): 311-319. Aposhian, H.V., R.A. Zakharyan, M.M. Avram, A. Sampayo-Reyes, and M.L. Wollenberg. 2004. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxification of the trivalent arsenic species. Toxicol. Appl. Pharmacol. 98:327–335 Arao, T., A. Kawasaki, K. Baba, and S. Matsumoto. 2011. Effects of arsenic compound amendment on arsenic speciation in rice grain. Environ. Sci. Technol. 45:1291–1297. Arienzo, M., 2000. Degradation of 2, 4, 6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound. Chemosphere 40: 331–337 Armstrong, W., 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration, and waterlogging. Physiol. Plant. 25 (2): 192–197 Armstrong, W., 1979. Aeration in higher plants. In: Woolhouse, H.W. (Ed.), Academic Press, London, pp. 225–332. Batista, B.L., Souza, J.M.O., De Souza, S.S., Barbosa Jr., F., 2011. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard. Mater. 191: 342–348. Beever, R.E., and D.W. Burns. 1980. Phosphorous uptake, storage and utilization by fungi. Adv. Bot. Res. 8:127–219. Benford, D. J.; Alexander, J.; Baines, J.; Bellinger, D. C.; Carrington, C.; Devesa i Peré z, V. A.; Duxbury, J.; Fawell, J.; Hailemariam, K.; Montoro, R.; Ng, J.; Slob, W.; Velé z, D.; Yager, J. W.; Zang, Y. Arsenic (addendum). In Safety Evaluation of Certain Contaminants in Food; The seventy-second meeting of the joint FAO/WHO expert committee on food additives (JECFA) Eds; Food and Agriculture Organization of the United Nations: Rome 2011; World Health Organization: Geneva, 2011; pp 153−316. Bentley, R., and T.G. Chasteen. 2002. Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 66:250–271 Bleeker, P.M., H.W.J. Hakvoort, M. Bliek, E. Souer, and H. Schat. 2006. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant holcus lanatus. Plant J. 45:917–929. Bogan, B.W., Trbovic, V., Paterek, J.R., 2003. Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils. Chemosphere 50: 12–21. Bothe, J.V., Brown, P.W., 1999.Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 33:3806–3811 Bruce, S.L., Noller, B.N., Grigg, A.H., Mullen, B.F., Mulligan, D.R., Ritchie, P.J., Currey, N., Ng, J.C., 2003. A field study conducted at Kidston gold mine to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicol. Lett. 137 Carey, A.M., K.G. Scheckel, E. Lombi, M. Newville, Y. Choi, G.J. Norton, J.M. Charnock, J. Feldmann, A.H. Price, and A.A. Meharg. 2010. Grain unloading of arsenic species in rice. Plant Physiol. 152:309–319. Carey, A.M., G.J. Norton, C. Deacon, K.G. Scheckel, E. Lombi, T. Punshon, M.L. Guerinot, A. Lanzirotti, M. Newville, Y. Choi, A.H. Price, and A.A. Meharg. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 192(1):87–98. Chen, C.C., J.B. Dixon, and F.T. Turner. 1980. Iron coatings on rice roots morphology and models of development. Soil Sci. Soc. Am. J. 44:1113–1119. Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165:91–97. Chiang, K.Y., K.C. Lin, S.C. Lin, T.K. Chang, and M.K. Wang. 2010. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. J. Hazard Mater. 181:1066–1071. Chou, M.L., J.S. Jean, C.M. Yang, Z.Y. Hseu, Y.H. Chen, H.L. Wang, S. Das, L.S. Chou. 2016. Inhibition of ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. J. Geochem. Explor. 163:19–27. Codex Alimentarius Commission. 2014. Joint FAO/WHO food standards program, 37th Session, CICG: Geneva, Switzerland. Codex Alimentarius Commission. 2016. Joint FAO/WHO food standards program, 39th Session, CICG: Italy, Switzerland. Colmer, T.D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26 (1): 17–36 Csanady, M., and I. Straub. 1995. Health damage due to pollution in Hungary. In Proceedings of the Rome Symposium, September, 1994, IAHS Publs. No. 233, pp. 1–11. Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:139–155. Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D. 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health.18:5 – 15. Das, S., M.L. Chou, J.S. Jean, C.C. Liu, H.J. Yang. 2016. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agroecosystem. Sci. Total Environ. 542 (Part A): 642–652. Daus, H., H. Weiss, J. Mattusch, and R. Wennrich. 2006. Preservation of arsenic species in water samples using phosphoric acid – Limitations and long-term stability. Talanta. 69:430–434. Deng, H., Ye, Z.H., Wong, M.H., 2009. Lead, zinc and iron (Fe 2+) tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL. Environ. Exp. Bot. 65 (2–3): 353–362 Deng, D., S. C. Wu, F. Y. Wu, H. Deng, and M. H. Wong. 2010. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environmental Pollution. 158(8): 2589-2595. Dixit, S., & Hering, J. G. 2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental science & technology. 37(18): 4182-4189. Duan, G.L., Y. Zhou, Y.P. Tong, R. Mukhopadhyay, B.P. Rosen, and Y.G. Zhu. 2007. A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 174:311–321. Fendorf, S., and B.D. Kocar. 2009. Biogeochemical processes controlling the fate and transport of arsenic: Implications for south and southeast Asia. Adv. Agron. 4(104):137–164. Fuessle, R.W., Taylor, M.A., 2004.Stabilization of arsenite wastes with prior oxidation. J. Environ. Eng. ASCE 130: 1063–1066 Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p.383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Physical and mineralogical methods. ASA and SSSA, Madison, WI. Goldberg, S. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals.Soil Sci. Soc. Am. J. 66: 413−421 Guo, T.; DeLaune, R. D.; Patrick, W. H., Jr. 1997. The influence of sediment redox chemistry on chemically active forms of arsenic cadmium, chromium, and zinc in estuarine sediment. Environ. Int. 23: 305−316. Hansel, C.M., S. Fendorf, S. Sutton, and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35:3863–2868. Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. 2016. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 50(8): 4178-4185. Hossain, M.B., M. Jahiruddin, R.H. Loeppert, G.M. Panaullah, M.R. Islam, and J.M. Duxbury. 2009. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176. Hu, Y ., J.H. Li, Y.G. Zhu, Y.Z. Huang, H.Q. Hu, and P. Christie. 2005. Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environ. Geochem. Health 27:169–176. Huang, J.H., G. Ilgen, and P. Fecher. 2010. Quantitative chemical extraction for arsenic speciation in rice grains. J. Anal. At. Spectrom. 25:800–802. Islam, S., Rahman, M. M., Islam, M. R., & Naidu, R. 2016. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environment International. 96: 139-155. Jones, L.C., B.J. Lafferty, and D.L. Sparks. 2012. Additive and competitive effects of bacteria and Mn oxides on arsenite oxidation kinetics. Environ. Sci. Technol. 46:6548–6555. Khan, M.A., J.L. Stroud, Y.G. Zhu, S.P. McGrath, and F.J. Zhao. 2010. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ. Sci. Technol. 44:8515–8521. Kotula, L., K. Ranathunge, L. Schreiber, and E. Steudle. 2009. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60(7):2155–2167. Kuramata, M., Abe, T. Matsumoto, S. Ishikawa. 2011. Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci. Plant Nutr. 57:248–258. Lee, C. H.; Hsieh, Y. C.; Lin, T. H.; Lee, D. Y. 2013. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil. 363: 231−241. Li, R.Y., J.L. Stroud, J.F. Ma, S.P. McGrath, and F.J. Zhao. 2009. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 43:3778–3783. Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, and F.J. Zhao. 2009. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150(4):2071–2080. Liu C, Luo C, Xu X, Wu C, Li F, Zhang G. 2012. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Chemosphere. 86:1106–1111 Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55:1707–1713. Liu, W.J., Y.G. Zhu, Y. Hu, P.N. Williams, A.G. Gault, A.A. Meharg, J.M. Charnock, and F.A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ. Sci. Technol. 40:5730–5736. Lomax, C., W.J. Liu, L. Wu, K. Xue, J. Xiong, J. Zhou, S.P. McGrath, A.A. Mehrag, A.J. Miller, and F.J. Zhao. 2012. Methylated arsenic species in plants originate from soil microorganisms. New Phytol. 193:665–672. Lombi E, K.G. Scheckel, J. Pallon, A.M. Carey, Y.G. Zhu, A.A. Meharg. 2009. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 184:193–201 Ma, J.F., N. Yamaji, N. Mitani, X.Y. Xu, Y.H. Su, S.P. McGrath, and F.J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. U. S. A. 105:9931–9935. Maher .W, S. Foster, F. Kirkowa, E. Donner and E. Lombi. 2013. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using xanes. Environ. Sci. Technol. 47:5821–5827. Mandal B.K., K.T. Suzuki. 2002. Arsenic round the world: a review. Talanta. 58:201–235. Marin, A. R.; Masscheleyn, P. H.; Patrick, W. H., Jr. 1993. Soil redox pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil. 152: 245−253. Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45:49–62. McLean, E.O. 1982. Soil pH and lime requirement. p.199–223. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI. Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay. Clay Miner. 7:317–327. Meharg, A.A., Hartley-Whitaker, J. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154 (1): 29–43. Meharg, A.A., and M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 37:229–234. Meharg, A.A., E. Lombi, P.N. Williams, K.G. Scheckel, J. Feldmann, A. Raab, Y. Zhu, and R. Islam. 2008. Speciation and localization of arsenic in white and 106 brown rice grains. Environ. Sci. Technol. 42:1051–1057. Meharg, A. A., P. N.Williams, E. Adomako, Y. Y. Lawgali, C. Deacon, A. Villada, R. C. J. Cambell, G. Sun, Y. G. Zhu, J. Feldmann, A. Raab, F. J. Zhao, R. Islam, S. Hossain and J. Yanai. 2009. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ. Sci. Technol. 43:1612– 1617 Mestrot, A., M.K. Uroic, T. Plantevin , M.R. Islam, E.M. Krupp, J. Feldmann, and A.A. Meharg. 2009. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ. Sci. Technol. 43:8270–8275. Mukherjee, A. B., Bhattacharya, P. 2001. Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environmental Reviews. 9(3): 189-220. Narukawa, T., Inagaki, K., Kuroiwa, T., Chiba, K., 2008. The extraction and speciation of arsenic in rice flour by HPLC–ICP-MS. Talanta 77: 427–432 Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic, and organic matter. p.539–577. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI. Northup, A., Cassidy, D., 2008. Calcium peroxide (CaO2) for use in modified Fenton chemistry. J. Hazard. Mater. 152: 164–1170 Norton, G., M. R. Islam, G. M. Duan, Y.L. Zhu, C. M. Deacon, A. C. Moran, S. Islam, F. J. Zhao, J. L. Stroud, S. P. McGrath, J. Feldmann, A. H. Price and A. A Meharg. 2010. Arsenic shoot-grain relationships in field grown rice cultivars. Environ. Sci. Technol. 44:1471−1477 Norton, G.J., E.E. Adomako, C.M. Deacon, A.M. Carey, A.H. Price, and A.A. Meharg. 2013. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ. Pollut. 177:38–47. Olyaie E, Banejad H, Afkhami A, Rahmani A, Khodaveisi J. 2012. Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Sep. Purif Technol. 95:10–15. Pan, W.S., Wu, C., Xue, S.G., William, H., 2014. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J. Environ. Sci. 26 (4): 892–899. Panaullah, G.M., T. Alam, M.B Hossain, R.H Loeppert, J.G. Lauren, C.A. Meisner, Z.U. Ahmed and J.M. Duxbury. 2009. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil. 317:31-39. Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E., Aposhian, H.V., 2000. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 163: 203–207. Pinto, S.S., and C.M. Mcgill. 1953. Arsenic trioxide exposure in industry. Ind. Med. Surg. 22:281–287. Qian, Y., Zhou, X., Zhang, Y., Zhang, W., & Chen, J. 2013. Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere. 91(5):717-723. Raab, A, P.N. Williams, A.A. Meharg, and J. Feldmann. 2007. Uptake and translocation of inorganic and methylated As species by plants. Environ. Chem. 4:197–203. Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A. 2008. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotox. Environ. Safe. 69:317–324 Ratnaike, R. N. 2003. Acute and chronic arsenic toxicity. Postgrad Med J .79:391–396. Rhoades, J. D. 1982. Soluble salts. Methods of soil analysis. Part 2. 2nd ed. p. 167-178. Schoof, R.A., Yost, L.J., Eickhoff, J., Crecelius, E.A., Cragin, D.W., Meacher, D.M., Menzel, D.B., 1999. A market basket survey of inorganic arsenic in food. Food Chem. Toxicol. 37 (8): 839–846. Sifuentes, G. B., & Nordberg, E. 2003. Mobilisation of Arsenic in the Rio Dulce Alluvial Cone, Santiago del Estero Province, Argentina. Doctoral dissertation, Master thesis. Department of Land and water resources engineering. Signes-Pastor, A.; Burló , F.; Mitra, K.; Carbonell-Barrachina, A. A.2007. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma. 137:504−510. Smedley, P.L., and D.G. Kinniburgh. 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17:517–568. Smith, E., A. L. Juhasz, J. Weber, R. Naidu. 2008. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci. Total Environ. 392:277–283. Syu, C. H., C. C. Huang, P. Y. Jiang, P. H. Chien, H. Y. Wang, J. Y. Su and D. Y. Lee. 2016. Effects of foliar and soil application of sodium silicate on arsenic toxicity and accumulation in rice (Oryza sativa L.) seedlings grown in As-contaminated paddy soils. Soil Sci. Plant Nutr. 62(4): 357-366. Takahashi, Y ., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38:1038–1044. Tieckelmann, R.E., Steele, R., 1991. Higher assay grade of calcium peroxide improves properties of dough. Food Technol. 45: 106–112. Tseng, W.P., 1977.Effects and dose–response relationship of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect. 19: 109–119. Tsukahara, T.; Ezaki, T.; Moriguchi, J.; Furuki, K.; Shimbo, S.; Matsuda-Inoguchi, N.; Ikeda, M. 2003. Rice as the most influential source of cadmium intake among general Japanese population.Sci. Total Environ. 305: 41−51. Tsutsumi, M. 1980. Intensification of arsenic toxicity to paddy rice by hydrogen sulfide and ferrous iron: I. Induction of bronzing and iron accumulation in rice by arsenic. Soil Sci. Plant Nutr. 26(4): 561-569. Williams, P.N., Price, A.H., Raab, A., Hossain, S.A., Feldmann, J., Meharg, A.A., 2005. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. 39: 5531–5540. Williams, P. N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A. J.; Feldmann, J.; Meharg, A. A. 2007. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 41: 6854−6859 World Health Organization (WHO). 1981. Environment Health Criteria 18: Arsenic. Geneva, World Health Organization. Wu, C., Z.H. Ye, S.C. Wu, D. Deng, Y.G. Zhu, and M.H. Wong. 2012. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J. Exp. Bot. 63(8):2961–2970 Xu, X.Y., S.P. McGrath, A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42:5574–5579. Yamaguchi, N.; Nakamura, T.; Dong, D.; Takahashi, Y.; Amachi, S.; Makino, T. 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere. 83:925−932 Yamauchi, T., S. Shimamura, M. Nakazono, T. Mochizuki. 2013. Aerenchyma formation in crop species: A review. Field Crops Research. 152:8–16. Yamane, T. Mechanisms and counter-measures of arsenic toxicity to rice plant.Bull. Shimane Agric. Exp. Stn.1989, 24,1−95 (in Japanese with English summary). Zavala, Y.J., R. Gerads, H. Gurleyuk, and J.M. Duxbury. 2008. Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ. Sci. Technol. 42:3861–3866. Zhang X.K., F.S. Zhang and D.R. Mao.1998. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant Soil. 2:33–39. Zhang X.K., F.S. Zhang and D.R. Mao. 1999. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): phosphorus uptake. Plant Soil. 209:187–192. Zhao, F.J., J.F. Ma, A.A Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181:777–794. Zhao, F.J., S.P. McGrath, and A.A. Meharg. 2010. Arsenic as a food chain contaminant: mechanism of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61:535–559. Zhao, F. J., J. L. Stroud, M. A. Khan and S. P. McGrath. 2012. Arsenic translocation in rice investigated using radioactive 73As tracer. Plant soil. 350(1-2): 413-420. Zheng, M.Z., C. Cai, Y. Hu, G.X. Sun, P.N. Williams, H.J. Cui, G. Li, F.J. Zhao, and Y.G. Zhu. 2011. Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol. 189:200–209. Zhu, Y.G., Sun, G.X., Lei, M., Teng, M., Liu, Y.X., Chen, N.C., Wang, L.H., Carey, A.M., Deacon, C., Raab, A., Meharg, A.A., Williams, P.N., 2008. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ. Sci. Technol. 42: 5008–5013. Zhu, Y.G., M.F. Yoshinaga, F. J. Zhao and Barry P. Rosen. 2014. Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences. 42:443–467 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67698 | - |
| dc.description.abstract | 由於水稻生長於厭氧環境下,使水稻與其他穀類作物相比較容易累積砷於穀粒中,因此食用稻米成為人體暴露於砷的主要途徑。許多前人研究以水分管理方法來降低水稻對砷的吸收,但在田間執行上較為困難,例如水稻在特定生長時期會需要大量的水分,且極度乾燥之環境會抑制其生長。而在亞洲,易降雨的氣候會使土壤長時間呈現浸水還原的狀態。因此,添加釋氧劑於浸水土壤中提供氧氣來降低土壤溶液中砷的有效性,可能為一更有效的方法來降低水稻中砷的累積。本研究之目的為以盆栽試驗種植水稻,探討施用過氧化鈣對土壤溶液中砷濃度及物種之變化、水稻吸收砷以及穀粒砷物種的影響。試驗使用四種土壤,分別為未添加砷之淇武蘭低砷濃度土壤 (13 mg kg-1)、人工添加 80 mg As(V) kg-1 之淇武蘭高砷濃度土壤 (78 mg kg-1) 以及兩天然低砷濃度 (16 mg kg-1) 與高砷濃度汙染 (132 mg kg-1) 之關渡平原土壤。過氧化鈣施用量分別為每公斤土壤添加0 g、5 g、10 g、20 g 之四種處理,分兩次施用,施用時機為水稻幼苗移植前三天與移植後第 60 天,種植期間測定土壤 pH、Eh 與土壤溶液中砷、鐵和砷物種濃度,於穀粒成熟期時採收,測定水稻株高、地上部生質量、穀粒產量、根部鐵膜生成量、植體各部位總砷濃度與穀粒砷物種,並另外進行孵育試驗觀察在無水稻生長情況下,施用過氧化鈣對土壤性質及土壤溶液之變化。結果顯示在孵育試驗及盆栽試驗中,土壤溶液總砷與總鐵濃度在大部分的監測時間下皆隨著過氧化鈣施用量的增加而下降。在低砷濃度處理中,水稻根部及地上部總砷濃度隨過氧化鈣施用量增加而下降,推測是由於土壤溶液中總砷濃度下降所導致,地上部生質量與穀粒產量也因而上升;但在高砷濃度處理中,推測由於水稻根部鐵膜生成量隨過氧化鈣施用量增加而減少,導致水稻根部及地上部總砷濃度上升,地上部生質量與穀粒產量也因此下降。施用過氧化鈣於低砷濃度土壤中會使糙米中三價砷的百分比下降,無機砷濃度也顯著下降;高砷濃度土壤中施用過氧化鈣則對糙米中無機砷濃度無顯著影響。 | zh_TW |
| dc.description.abstract | Paddy rice is a staple food worldwide, but it accumulates As more efficiently in comparison with other cereals. Recently, rice has been considered to be a major As exposure pathway to human beings. Due to the high solubility and mobility of As under flooding conditions, and enhancing As uptake and accumulation of As by rice plants. Water management is one of the methods have been investigate to decrease As uptake by rice plants. However, water management is not always achievable, because of the growth of paddy rice is inhibited under water-deficiency conditions and the rainy weather in some area. It predicts the oxygen-releasing compounds application into paddy field may be a more efficient way to reduce As accumulation and toxicity in rice. Therefore, the objective of this study is to investigate the effect of CaO2 application on As accumulation in rice plant and arsenic species in brown rice.
Pot experiments of rice growth in the greenhouse were conducted with four soils, including two geogenic As-elevated Guandu soils [GdL and GdH with low (16 mg kg-1) and high (132 mg kg-1) levels of As, respectively] and two Chiwulan soils [CaL and CaH with As-unspiked and spiked (80 mg As(V) kg-1), respectively]. CaO2 was added into soils at the application concentration of 0, 5, 10 and 20 g per kg soils and divided into separate applications. The applications were performed at 3 days before rice transplanting and the 60 days after transplanting respectively. Rice was harvested at the maturity stage. Concentrations of As, Fe and As species in soil solutions and As concentrations in different parts of rice plant were determined. The results indicate that the As and Fe concentrations in the soil solution were decreased significantly by the application of CaO2 most of the time in both incubation and pot experiments. In CaL and GdL soils, As concentration in rice roots and shoots were decreased with the increase of CaO2 application, and gives a positive influence on rice shoot biomass and grain yield. On the other hand, CaO2 application in CaH and GdH soils decreased the formation of iron plaque on the rice root thus contributed to the increase of As concentration in rice root and shoot, and declined rice shoot biomass and grain yield. Effect of CaO2 application on arsenic speciation in rice grain shows that CaO2 application leads to the decline of As(III) percentage and inorganic As concentration in brown rice in CaL and GdL soils; for CaH and GdH soils, DMA percentage decreased and there was no significant difference in inorganic As concentration in brown rice. It suggested that CaO2 might be a potential amendment to decrease As accumulation in rice at low level of As-contaminated paddy soils. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:44:45Z (GMT). No. of bitstreams: 1 ntu-106-R04623015-1.pdf: 3660681 bytes, checksum: 8932faf17586f662656d0c4c1d7f46f1 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 第一章、 緒論 1
1.1 砷之化學性質 1 1.2 砷的來源 5 1.3 砷的汙染及對人體之危害 7 1.4 土壤中砷的動態 10 1.5 水稻對砷的吸收及代謝機制 11 1.6 水稻根部鐵膜對水稻吸收砷之影響 15 1.7 水稻穀粒中砷的累積及物種分布 18 1.8 水分管理對水稻吸收砷之影響 20 1.9 過氧化鈣的施用對作物吸收砷之影響 21 1.10 研究動機及目的 22 第二章、 材料與方法 23 2.1 供試土壤之採集 23 2.1.1 淇武蘭土系 (Chiwulan Series-Ca) 23 2.1.2 關渡平原土壤 (Guandu, Gd) 23 2.2 土壤基本理化性質分析 24 2.2.1 土壤水分含量 (NIEA S280.61C) 24 2.2.2 土壤 pH 值 (McLean, 1982) 24 2.2.3 土壤 EC 值 (Rhoades, 1982) 24 2.2.4 土壤質地 (Gee and Bauder, 1986) 25 2.2.5 土壤有機質含量 (Nelson and Sommers, 1982) 25 2.2.6 土壤無定型鐵鋁氧化物含量 (McKeague and Day, 1966) 26 2.2.7 土壤游離性鐵鋁氧化物含量 (Mehra and Jackson, 1960) 26 2.2.8 土壤總砷含量 (Mehrag and Rahman, 2003) 27 2.2.9 土壤重金屬含量 (行政院環保署環境檢驗所,2003) 27 2.3 供試土壤之前處理 30 2.3.1 供試土壤添加 As (V) 之處理 30 2.3.2 供試土壤添加基肥處理 30 2.4 供試土壤添加過氧化鈣之處理 31 2.5 土壤浸水孵育試驗 32 2.6 水稻生長之盆栽試驗 32 2.6.1 供試水稻品種 32 2.6.2 水稻栽培環境 32 2.6.3 種子催芽及秧苗培育 33 2.6.4 盆栽試驗 33 2.6.5 盆栽試驗期間土壤孔隙水之採集與分析 34 2.6.6 盆栽試驗期間土壤 pH 值及土壤氧化還原電位測定 37 2.7 植體採收 37 2.8 水稻根部鐵膜萃取與分析 37 2.9 植體總砷、鐵、磷含量分析 (Mehrag and Rahman, 2003) 38 2.10 糙米砷物種分析 (Huang et al., 2010) 38 2.11 統計分析 39 第三章、 結果與討論 42 3.1 供試土壤基本理化性質 42 3.2 土壤浸水孵育試驗 46 3.2.1 土壤 pH、Eh 及 DO 值變化 46 3.2.2 土壤溶液中總鐵與總砷濃度變化 51 3.3 盆栽試驗 54 3.3.1 土壤 pH、Eh 值變化 54 3.3.2 土壤孔隙水中總鐵與總砷濃度變化 57 3.3.3 土壤孔隙水中砷物種之變化 61 3.3.4 水稻生長情形、株高、生質量及穀粒產量 66 3.3.5 水稻根部鐵膜生成量與根部、地上部總砷含量 73 3.3.6 水稻糙米總砷濃度 77 3.3.7 水稻糙米砷物種分布及無機砷濃度 80 第四章、 結論 85 第五章、 參考文獻 86 第六章、 附錄 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 過氧化鈣 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 穀粒砷物種 | zh_TW |
| dc.subject | paddy rice | en |
| dc.subject | arsenic | en |
| dc.subject | calcium peroxide | en |
| dc.subject | arsenic species | en |
| dc.title | 施用過氧化鈣對砷汙染土壤中水稻植體砷及穀粒砷物種累積之影響 | zh_TW |
| dc.title | Effect of Calcium Peroxide Application on Arsenic Accumulation in Rice Plants and Arsenic Species in Rice Grains Grown in As-contaminated Paddy Soils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢,鄒裕民,許正一,莊愷瑋 | |
| dc.subject.keyword | 水稻,砷,過氧化鈣,穀粒砷物種, | zh_TW |
| dc.subject.keyword | paddy rice,arsenic,calcium peroxide,arsenic species, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201702113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
