Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67697
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許順吉
dc.contributor.authorTai-Wei Huen
dc.contributor.author胡太維zh_TW
dc.date.accessioned2021-06-17T01:44:42Z-
dc.date.available2018-08-03
dc.date.copyright2017-08-03
dc.date.issued2017
dc.date.submitted2017-07-26
dc.identifier.citation[1] Durrett, R.(1995). Probability: Theory and Examples, Second edition. Duxbury Press, Belmont, CA.
[2] Durrett, R. (1996) Stochastic Calculus: A Practical Introduction. CRC Press.
[3] Pestein, V.C., W.D. Sudderth (1985). Continuous-time red and black: How to control a diffusion to a goal. Math. Oper. Res. 10 599-611.
[4] Browne, S.(1995) Optimal investment policies for a rm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20 937-957.
[5] Chicone, C.(1999). Ordinary Differential Equations with Applications. Springer. New York.
[6] Friedman, A. (1975) Stochastic Differential Equations and Applications, Volume 1. Academic Press, New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67697-
dc.description.abstract本論文在討論一個投資模型,此模型中有兩個風險,分別是股票市場風險及系統性風險,在不完全市場(incomplete market)中,我們無法藉由股票的操作將系統性風險消除。我們將探討在此模型下的各種最佳化問題,並找出對應的最佳策略,問題包括極小化破產機率、極小化折扣罰款的期望值、極大化資產在中止時間作用在效用函數上的期望值。
我們主要藉由解HJB方程的方法來找出最佳策略, 另外我們還會引進一些方法當HJB 方程不好解的時候。
zh_TW
dc.description.abstractIn this paper, we study the investment models that have two risk processes. One is the risk process from the stock market and another is an external risk process. Also, we are only interested in the incomplete market model, that is, we cannot eliminate the external risk process by investing in the stock market. We will consider several optimization problems, including minimizing the ruin probability, minimizing the expected discounted penalty and maximizing the expected utility at terminal time.
Our main approach is to solve the HJB equation to find an optimal strategy and the value function. In addition, we will use other approaches to find an optimal strategy when the HJB equation is hard to solve.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:44:42Z (GMT). No. of bitstreams: 1
ntu-106-R04221013-1.pdf: 822749 bytes, checksum: 0264eb6c4d35862c785720e90ae34422 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
1. Introduction 1
2. A Brief Review to HJB Equation 6
3. Minimize the Ruin Probability 8
3.1. Minimize the Ruin Probability with No Constraint 8
3.2. Minimize the Ruin Probability with Constraint 12
3.3. An Alternative Approach 14
4. Minimize the Expected Discounted Penalty 22
4.1. Minimize the Expected Discounted Penalty with no Constraint 22
4.2. Minimize the Discounted Penalty with Constraint 25
5. Maximize the Expected Exponential Utility at Terminal Time 36
Appendix A. 42
References 56
dc.language.isoen
dc.title風險資產的投資問題研究zh_TW
dc.titleA Study of Investment Problem for Firm with Risk Processen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃啟瑞,周雲雄,孫立憲
dc.subject.keyword機率論,HJB方程,隨機過程,zh_TW
dc.subject.keywordProbability theory,HJB equation,random process,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201701946
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
803.47 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved