請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Jyun-De Wu | en |
| dc.contributor.author | 吳俊德 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:44:30Z | - |
| dc.date.available | 2027-07-25 | |
| dc.date.copyright | 2017-07-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | [1] Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology 5, 783-787 (2010).
[2] Tang, Y. & Cohen, A. Optical Chirality and Its Interaction with Matter. Physical Review Letters 104, (2010). [3] Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311-314 (2012). [4] Hentschel, M., Schäferling, M., Weiss, T., Liu, N. & Giessen, H. Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters 12, 2542-2547 (2012). [5] Hentschel, M., Schäferling, M., Metzger, B. & Giessen, H. Plasmonic Diastereomers: Adding up Chiral Centers. Nano Letters 13, 600-606 (2013). [6] Frank, B. et al. Large-Area 3D Chiral Plasmonic Structures. ACS Nano 7, 6321-6329 (2013). [7] Ogier, R., Fang, Y., Svedendahl, M., Johansson, P. & Käll, M. Macroscopic Layers of Chiral Plasmonic Nanoparticle Oligomers from Colloidal Lithography. ACS Photonics 1, 1074-1081 (2014). [8] Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures. Physical Review X 2, (2012). [9] Schäferling, M., Yin, X., Engheta, N. & Giessen, H. Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics 1, 530-537 (2014). [10] Rodrigues, S., Lan, S., Kang, L., Cui, Y. & Cai, W. Nonlinear Imaging and Spectroscopy of Chiral Metamaterials. Advanced Materials 26, 6157-6162 (2014). [11] Rodrigues, S., Cui, Y., Lan, S., Kang, L. & Cai, W. Metamaterials Enable Chiral-Selective Enhancement of Two-Photon Luminescence from Quantum Emitters. Advanced Materials 27, 1124-1130 (2014). [12] Kang, L. et al. An Active Metamaterial Platform for Chiral Responsive Optoelectronics. Advanced Materials 27, 4377-4383 (2015). [13] Fang, Y., Verre, R., Shao, L., Nordlander, P. & Käll, M. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Letters 16, 5183-5190 (2016). [14] Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications 8, 14180 (2017). [15] Zhou, Y., Yang, M., Sun, K., Tang, Z. & Kotov, N. Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals. Journal of the American Chemical Society 132, 6006-6013 (2010). [16] Russier-Antoine, I. et al. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties. Progress in Natural Science: Materials International 26, 455-460 (2016). [17] Vecchi, G., Giannini, V. & Gómez Rivas, J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Physical Review B 80, (2009). [18] Ormonde, A., Hicks, E., Castillo, J. & Van Duyne, R. Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy. Langmuir 20, 6927-6931 (2004). [19] 曾重賓,“氧電漿輔助奈米球微影術之研究與應用,” 國立成功大學, 2010 [20] 鐘昕展,“奈米球鏡微影術製備金屬陣列感測器之應用,” 國立成功大學, 2012 [21] Wu, W., Dey, D., Memis, O., Katsnelson, A. & Mohseni, H. Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography. Nanoscale Research Letters 3, 351-354 (2008). [22] Wu, W., Katsnelson, A., Memis, O. & Mohseni, H. A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology 18, 485302 (2007). [23] Wu, W., Dey, D., Memis, O., Katsnelson, A. & Mohseni, H. A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars. Nanoscale Research Letters 3, 123-127 (2008). [24] Wood, R. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London 18, 269-275 (1902). [25] Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America 31, 213 (1941). [26] 邱國斌、蔡定平. 金屬表面電漿簡介. 物理雙月刊 2006, 28, 472-485. [27] 吳民耀、劉威志. 表面電漿子理論與模擬. 物理雙月刊 2006, 28, 486-496 [28] Zayats, A., Smolyaninov, I. & Maradudin, A. Nano-optics of surface plasmon polaritons. Physics Reports 408, 131-314 (2005). [29] Salerno, M. et al. Near-field optical response of a two-dimensional grating of gold nanoparticles. Physical Review B 63, (2001). [30] Munday, J. & Atwater, H. Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters 11, 2195-2201 (2011). [31] Bohren, C. & Huffman, D. Absorption and scattering of light by small particles. (Wiley, 2013). [32] Carron, K., Lehmann, H., Fluhr, W., Meier, M. & Wokaun, A. Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. Journal of the Optical Society of America B 3, 430 (1986). [33] Offermans, P. et al. Universal Scaling of the Figure of Merit of Plasmonic Sensors. ACS Nano 5, 5151-5157 (2011). [34] Auguié, B. & Barnes, W. Collective Resonances in Gold Nanoparticle Arrays. Physical Review Letters 101, (2008). [35] Hecht, E. Optics. (Addison-Wesley, 2002). [36] Berova, N. Comprehensive chiroptical spectroscopy. (John Wiley & Sons, 2012). [37] Petrucci, R., Harwood, W. & Herring, F. General chemistry. (Prentice Hall, 2002), p. 996-7 [38] Whitten, K., Davis, R. & Gailey, K. General chemistry. (Saunders College Publ., 1992), p.976-7 [39] Kane Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation 14, 302-307 (1966). [40] Taflove, A. & Hagness, S. Computational electrodynamics. (Artech House, 2010). [41] Taflove, A. & Brodwin, M. Computation of the Electromagnetic Fields and Induced Temperatures Within a Model of the Microwave-Irradiated Human Eye. IEEE Transactions on Microwave Theory and Techniques 23, 888-896 (1975). [42] Mur, G. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. IEEE Transactions on Electromagnetic Compatibility EMC-23, 377-382 (1981). [43] Berenger, J. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114, 185-200 (1994). [44] Sacks, Z., Kingsland, D., Lee, R. & Jin-Fa Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation 43, 1460-1463 (1995). [45] Gedney, S. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Transactions on Antennas and Propagation 44, 1630-1639 (1996). [46] Lipkin, D. Existence of a New Conservation Law in Electromagnetic Theory. Journal of Mathematical Physics 5, 696-700 (1964). [47] Tang, Y. & Cohen, A. Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science 332, 333-336 (2011). [48] Denkov, N. et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183-3190 (1992). [49] He, Y., Larsen, G., Ingram, W. & Zhao, Y. Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers. Nano Letters 14, 1976-1981 (2014). [50] Chang, Y., Chung, H., Lu, S. & Guo, T. A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology 24, 095302 (2013). [51] Fredriksson, H. et al. Hole–Mask Colloidal Lithography. Advanced Materials 19, 4297-4302 (2007). [52] Cataldo, S. et al. Hole-Mask Colloidal Nanolithography for Large-Area Low-Cost Metamaterials and Antenna-Assisted Surface-Enhanced Infrared Absorption Substrates. ACS Nano 6, 979-985 (2012). [53] Zhao, J. et al. Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials. Beilstein Journal of Nanotechnology 5, 577-586 (2014). [54] Syrenova, S., Wadell, C. & Langhammer, C. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters 14, 2655-2663 (2014). [55] Meneses-Rodríguez, D., Armelles, G. & Cebollada, A. From disk to ring: Aspect ratio control of the magnetoplasmonic response in Au/Co/Au nanostructures fabricated by hole-mask colloidal lithography. Applied Physics Letters 106, 083105 (2015). [56] Trompoukis, C. et al. Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells. Optics Express 24, A191 (2015). [57] Feng, H. et al. Active magnetoplasmonic split-ring/ring nanoantennas. Nanoscale 9, 37-44 (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67693 | - |
| dc.description.abstract | 在此論文中,我將利用低成本的奈米製程技術,製作出大面積的三維手性超穎材料。首先,透過奈米球鏡微影術做出週期的金屬奈米孔洞於光阻上,以作為之後蒸鍍所需的遮罩。再依照孔洞遮罩微影術的概念,傾角斜向蒸鍍金屬及氧化層,成功把金屬層及氧化層相疊後,使其呈螺旋狀的奈米結構,此結構的手性近場會與不同手性的分子產生交互作用,得到在近紅外光波段的新圓二色性光譜,再透過此光譜分辨出分子的手性。
此外,我們也利用時域有限差分法(FDTD)來模擬計算我們的結構特性,和實驗相互驗證。最後,我們相信此技術,在未來的生化工業上,會有絕佳的應用。 | zh_TW |
| dc.description.abstract | In this study, we have demonstrated a cost effective nanofabrication method to fabricate three-dimensional (3D) chiral metamaterial arrays covering a large area. First, Nanospherical-Lens Lithography (NLL) is employed to fabricate periodic metal nanohole arrays on top of photoresist film. This sample configuration is ideal for the following angled metal or dielectric material evaporation, whose concept is very similar to Hole-Mask Lithography. Metal and dielectric materials are deposited sequentially and nanodisks stacked up in a spiral manor are successfully demonstrated. The fabricated 3D nanostructures exhibit optical chirality in the near-infrared and interact differently for chiral molecules with different handedness. The measured circular dichroism (CD) offers the possibility to distinguish chemical molecules with different handedness. Finite-difference time-domain method is also performed to confirm our experimental observation. We believe the proposed methods will very useful in future biological or chemical application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:44:30Z (GMT). No. of bitstreams: 1 ntu-106-R04222005-1.pdf: 6462493 bytes, checksum: 23df01fbbb7b644072330fcc0fc9f1bb (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xvi Chapter 1 Introduction 1 Chapter 2 Theoretical background 3 2.1 Nanospheres 3 2.1.1 Self-Assembly Effect of Nanosphere 3 2.1.2 Nanospherical-Lens Lithography (NLL) 4 2.1.3 Hole-Mask Colloidal Lithography (HCL) 8 2.2 Principle of Surface Plasmon 12 2.2.1 Surface Plasmon Resonance 12 2.2.2 Localized Surface Plasmon Resonance (LSPR) 16 2.2.3 The Applications of LSPR 19 2.3 Chirality 23 2.3.1 Optical Activity 23 2.3.2 Measurement of Rotation of Polarization 24 2.3.3 Circular Dichroism (CD) 26 2.3.4 Optical Chirality (OC) 30 2.3.5 Other Applications of Chiral Metamaterials 39 2.4 Notations of Chiral Biomolecules 48 2.5 Simulation Method 51 2.5.1 Finite Difference 51 2.5.2 Finite-Difference Time-Domain Method 53 Chapter 3 Instrument 57 3.1 Fabrication Instrument 57 3.1.1 Polystyrene Sphere and Convective Self-Assembly System 57 3.1.2 Exposure System (Mercury, Xenon lamp) 59 3.1.3 E-Beam Evaporator 60 3.1.4 Plasma Etching System 61 3.2 Measurement Instrument 62 3.2.1 Scanning Electron Microscope (SEM) 62 3.2.2 Spectrophotometer 63 Chapter 4 Experimental Results and Discussion 64 4.1 Design of LH & RH Spiral Nanostructures 64 4.1.1 Fabrication of Nanostructures 64 4.1.2 Discussion by Simulation 70 4.2 Measurement of LH & RH Spiral Nanostructures 78 4.2.1 Setup of Chiral Measurement 78 4.2.2 Ag Spiral Nanostructures 79 4.2.3 Au Spiral Nanostructures 81 4.2.4 Comparison of Ag and Au Spiral Nanostructures 84 4.2.5 Comparison of Our Chiral Metamaterial and Published Papers 85 4.3 Biomolecules Sensing of Metamaterial 88 4.3.1 Analytical Method of Biomolecules Sensing 88 4.3.2 Setup of Chiral Bio-Sensing 92 4.3.3 Cysteine Sensing 93 4.3.4 Thalidomide Sensing 95 Chapter 5 Conclusion and Future Work 98 5.1.1 Conclusion 98 5.1.2 Future Work 98 REFERENCE 99 | |
| dc.language.iso | en | |
| dc.subject | 奈米球鏡微影術 | zh_TW |
| dc.subject | 手性 | zh_TW |
| dc.subject | 圓二色性 | zh_TW |
| dc.subject | 超穎材料 | zh_TW |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | 生物感測 | zh_TW |
| dc.subject | Nanospherical-Lens Lithography | en |
| dc.subject | Chirality | en |
| dc.subject | Metamaterial | en |
| dc.subject | Circular Dichroism | en |
| dc.subject | FDTD | en |
| dc.subject | Bio-Sensing | en |
| dc.title | 奈米球鏡微影術及孔洞遮罩微影術製作三維手性超穎材料之研究 | zh_TW |
| dc.title | Three-Dimensional Chiral Metamaterials Fabricated Using Nanospherical-Lens Lithography and Hole-Mask Lithography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張允崇(Yun-Chorng Chang) | |
| dc.contributor.oralexamcommittee | 藍永強(Yung-Chiang Lan) | |
| dc.subject.keyword | 奈米球鏡微影術,手性,圓二色性,超穎材料,時域有限差分法,生物感測, | zh_TW |
| dc.subject.keyword | Nanospherical-Lens Lithography,Chirality,Metamaterial,Circular Dichroism,FDTD,Bio-Sensing, | en |
| dc.relation.page | 104 | |
| dc.identifier.doi | 10.6342/NTU201701961 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
