請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67687完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Ming-Yen Su | en |
| dc.contributor.author | 蘇明彥 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:44:10Z | - |
| dc.date.available | 2020-08-01 | |
| dc.date.copyright | 2017-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-27 | |
| dc.identifier.citation | [1] R. H. Ritchie, “Plasmon losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957).
[2] W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115 (2008). [3] P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 1, 566–613 (1900). [4] P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6, 4370 (1972). [5] C. Sönnichsen, Plasmons in metal nanostructures Ph.D. Thesis (Ludwig- Maximilians-Universtät München, München, 2001). [6] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 257403 (2005). [7] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Drastic Reduction of Plasmon Damping in Gold Nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [8] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). [9] J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [10] V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). [11] J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). [12] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). [13] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908). [14] C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949 (2000). [15] B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic Tandem thin-film solar-cells ontaining silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004). [16] M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, “Plasmonic heating of gold nanoparticles and its exploitation, ” Proc. SPIE 5649, 565 (2005). [17] K. H. Su, Q. H. Wei, and X. Zhang, “Surface Plasmon Coupling Between Two Nano Au Particles, ” IEEE-NANO 2, 279 (2003). [18] P. Raveendran, J. Fu and S.L. Wallen, “A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy, ” Green Chem. 8, 34 (2006). [19] M. J. Kim, H. J. Na, K.C. Lee, E.A. Yoo, and M.Y. Lee, “Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform, ” J. Mater. Chem. 13, 1789 (2003). [20] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529 (1999). [21] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). [22] G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [23] K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008). [24] M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253-1257 (2008). [25] J. Lin, A. Mohammadizia, A. Neogi, H. Morkoç, and M. Ohtsu, “Surface plasmon enhanced UV emission in AlGaN/GaN quantum well,” Appl. Phys. Lett. 97, 221104 (2010). [26] Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011). [27] C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011). [28] N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Scientific Reports 2, 00816 (2012). [29] H. S. Chen, C. F Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013). [30] C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013). [31] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93, 041102 (2008). [32] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93, 121107 (2008). [33] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett. 94, 041103 (2009). [34] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94, 191109 (2009). [35] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011). [36] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110, 177406 (2013). [37] C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010). [38] C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014). [39] C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014). [40] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008). [41] Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22, A155-A166 (2014). [42] G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95, 171103 (2009). [43] Y. C. Lu, Y. S. Chen, F. J. Tsai, J. Y. Wang, C. H. Lin, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94, 233113 (2009). [44] C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17, 14186-14198 (2009). [45] C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y.g Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Transact. Electron Dev. 63, 3989-3995 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67687 | - |
| dc.description.abstract | 在本論文中,我們於氮化銦鎵量子井結構上製作銀奈米顆粒,並分析被其他金屬包覆之銀奈米顆粒的表面電漿子共振與耦合行為。理論上,兩種金屬的交界面並不會產生表面電漿子共振,但我們發現在鈦或鋁薄膜上製作銀奈米顆粒時,可以觀察到顯著的表面電漿子共振效應,若在銀奈米顆粒上覆蓋鈦或鋁,或者在銀奈米顆粒下方也有鈦薄膜,形成鈦/銀奈米顆粒/鈦或鈦/銀奈米顆粒/鋁的三明治結構時,也有類似的共振現象。我們也展示了當表面電漿子共振波長與量子井的發光波長相近時的耦合效果,內部量子效率的提昇及光致激發螢光衰減時間的減少都證實有顯著的表面電漿子耦合效應。我們推斷在被其他金屬完全或部份包覆的銀奈米顆粒所觀察到的表面電漿子共振現象是因為銀與其他金屬之間形成氧化物薄膜,可能是氧化鋁或氧化鈦在金屬之間形成介電質夾層。我們也進行理論模擬,確認這樣的介電質夾層會導致表面電漿子共振現象,但其共振強度相較於未覆蓋金屬時會略為減弱。 | zh_TW |
| dc.description.abstract | The surface plasmon (SP) resonance behaviors of Ag nanoparticles (NPs) surrounded by other metals and the SP coupling effects with InGaN/GaN quantum wells (QWs) below the metal nanostructures are demonstrated. Theoretically, SP resonance cannot occur at the interface between two different metals. However, in our study, significant SP resonance behaviors can be observed when Ag NPs are formed at the tops of Ti and Al films, covered by Ti and Al films, or sandwiched by Ti and/or Al films. The effects of SP coupling with the QWs, which emit light at the wavelengths close to SP resonance peaks, are also illustrated. The increase of internal quantum efficiency and the decrease of photoluminescence decay time of the QWs confirm the strong SP coupling effects. The SP resonance behaviors at the Ag NPs partly or completely surrounded by other metals are attributed to the formation of an oxidized thin layer between Ag and other metals. In particular, TiOx and AlxOy can be easily formed at the interface for forming a dielectric interlayer. Based on simulation studies, such a dielectric interlayer can result in significant SP resonance although it becomes weaker. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:44:10Z (GMT). No. of bitstreams: 1 ntu-106-R03941043-1.pdf: 2681443 bytes, checksum: 3df740b02e127f7d08b180ade39583ed (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents iv Chapter 1 Introduction 1 1.1 Surface Plasmons 1 1.1.1 Dielectric Constants of Metals 1 1.1.2 Surface Plasmon Polariton (SPP) 3 1.1.3 Localized Surface Plasmon (LSP) 4 1.1.4 Application of Surface Plasmon 7 1.2 Surface Plasmon Coupled Light Emitting Diode 9 1.3 Motivations 12 1.4 Thesis Structure 13 Chapter 2 Sample Preparations and Study Methods 17 Chapter 3 Surface Plasmon Resonance Behaviors of Ag Nanoparticles 19 3.1 Ag Nanoparticles Surrounded by a Transparent Conductor 19 3.2 Ag Nanoparticles Covered by Metals 20 3.3 Ag Nanoparticles Formed on Metal Interlayers 22 3.4 Thermal Annealing Effect on Ag Nanoparticles Covered by Ti Film 24 Chapter 4 Discussions 44 Chapter 5 Conclusions 50 References 51 | |
| dc.language.iso | en | |
| dc.subject | 氮化銦鎵 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | surface plasmon | en |
| dc.subject | GaInN | en |
| dc.title | 包覆其他金屬的銀奈米顆粒之表面電漿子共振與耦合行為 | zh_TW |
| dc.title | Surface Plasmon Resonance and Coupling Behaviors of Ag Nanoparticles Surrounded by Other Metals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉,陳奕君,吳肇欣,黃建璋 | |
| dc.subject.keyword | 表面電漿子,氮化銦鎵, | zh_TW |
| dc.subject.keyword | surface plasmon,GaInN, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201702148 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
