請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67680
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊雅惠(Ya-Hui Chuang) | |
dc.contributor.author | Chia-I Lin | en |
dc.contributor.author | 林佳儀 | zh_TW |
dc.date.accessioned | 2021-06-17T01:43:47Z | - |
dc.date.available | 2022-09-08 | |
dc.date.copyright | 2017-09-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-27 | |
dc.identifier.citation | 1. Dunn, E., et al., Annotating genes with potential roles in the immune system: six new members of the IL-1 family. Trends Immunol, 2001. 22(10): p. 533-6.
2. Busfield, S.J., et al., Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics, 2000. 66(2): p. 213-6. 3. Kumar, S., et al., Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem, 2000. 275(14): p. 10308-14. 4. Pan, G., et al., IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine, 2001. 13(1): p. 1-7. 5. Smith, D.E., et al., Four new members expand the interleukin-1 superfamily. J Biol Chem, 2000. 275(2): p. 1169-75. 6. Taylor, S.L., et al., Genomic organization of the interleukin-1 locus. Genomics, 2002. 79(5): p. 726-33. 7. Kumar, S., et al., Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine, 2002. 18(2): p. 61-71. 8. Bufler, P., et al., A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13723-8. 9. Novick, D., et al., Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity, 1999. 10(1): p. 127-36. 10. Nold, M.F., et al., IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol, 2010. 11(11): p. 1014-22. 11. Zhao, P.W., et al., Plasma levels of IL-37 and correlation with TNF-alpha, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis. PLoS One, 2014. 9(5): p. e95346. 12. Ye, L., et al., IL-37 Alleviates Rheumatoid Arthritis by Suppressing IL-17 and IL-17-Triggering Cytokine Production and Limiting Th17 Cell Proliferation. J Immunol, 2015. 194(11): p. 5110-9. 13. Ye, L., et al., IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity. J Transl Med, 2014. 12: p. 69. 14. Weidlich, S., et al., Intestinal expression of the anti-inflammatory interleukin-1 homologue IL-37 in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr, 2014. 59(2): p. e18-26. 15. Teng, X., et al., IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production. J Immunol, 2014. 192(4): p. 1815-23. 16. Song, L., et al., Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol, 2013. 33(1): p. 111-7. 17. Li, Y., et al., Increased expression of IL-37 in patients with Graves' disease and its contribution to suppression of proinflammatory cytokines production in peripheral blood mononuclear cells. PLoS One, 2014. 9(9): p. e107183. 18. Li, Y., et al., The possible role of the novel cytokines il-35 and il-37 in inflammatory bowel disease. Mediators Inflamm, 2014. 2014: p. 136329. 19. Imaeda, H., et al., Epithelial expression of interleukin-37b in inflammatory bowel disease. Clin Exp Immunol, 2013. 172(3): p. 410-6. 20. Chen, B., et al., Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity. J Transl Med, 2015. 13: p. 36. 21. Wang, W.Q., et al., IL-37b gene transfer enhances the therapeutic efficacy of mesenchumal stromal cells in DSS-induced colitis mice. Acta Pharmacol Sin, 2015. 36(11): p. 1377-87. 22. Hirschfield, G.M. and M.E. Gershwin, The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol, 2013. 8: p. 303-30. 23. Bowlus, C.L., Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepat Med, 2016. 8: p. 89-95. 24. Lindor, K., Ursodeoxycholic acid for the treatment of primary biliary cirrhosis. N Engl J Med, 2007. 357(15): p. 1524-9. 25. Lindor, K.D., et al., Primary biliary cirrhosis. Hepatology, 2009. 50(1): p. 291-308. 26. Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005. 353(12): p. 1261-73. 27. Hirschfield, G.M., et al., Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med, 2009. 360(24): p. 2544-55. 28. Bogdanos, D.P., et al., Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology, 2005. 42(2): p. 458-65. 29. Long, S.A., et al., Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol, 2001. 167(5): p. 2956-63. 30. Gershwin, M.E., et al., Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol, 1987. 138(10): p. 3525-31. 31. Ishibashi, H., S. Shimoda, and M.E. Gershwin, The immune response to mitochondrial autoantigens. Semin Liver Dis, 2005. 25(3): p. 337-46. 32. Invernizzi, P., C. Selmi, and M.E. Gershwin, Update on primary biliary cirrhosis. Dig Liver Dis, 2010. 42(6): p. 401-8. 33. Rigopoulou, E.I., et al., Prevalence and clinical significance of isotype specific antinuclear antibodies in primary biliary cirrhosis. Gut, 2005. 54(4): p. 528-32. 34. Wesierska-Gadek, J., et al., Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology, 2006. 43(5): p. 1135-44. 35. Shimoda, S., et al., HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med, 1995. 181(5): p. 1835-45. 36. Kita, H., et al., Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest, 2002. 109(9): p. 1231-40. 37. Lan, R.Y., et al., Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology, 2006. 43(4): p. 729-37. 38. Lan, R.Y., et al., Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun, 2009. 32(1): p. 43-51. 39. Kikuchi, K., et al., Bacterial CpG induces hyper-IgM production in CD27(+) memory B cells in primary biliary cirrhosis. Gastroenterology, 2005. 128(2): p. 304-12. 40. Selmi, C., et al., Innate immunity and primary biliary cirrhosis. Curr Mol Med, 2009. 9(1): p. 45-51. 41. Shimoda, S., et al., CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology, 2010. 51(2): p. 567-75. 42. Wu, S.J., et al., Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-25. 43. Tsuneyama, K., et al., Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis. Hepatology, 1998. 28(3): p. 620-3. 44. Kita, H., et al., Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology, 2002. 123(4): p. 1031-43. 45. Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-40. 46. Krams, S.M., K. Dorshkind, and M.E. Gershwin, Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient (SCID) mice. J Exp Med, 1989. 170(6): p. 1919-30. 47. Yang, G.X., et al., Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology, 2008. 47(6): p. 1974-82. 48. Irie, J., et al., NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med, 2006. 203(5): p. 1209-19. 49. Oertelt, S., et al., Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol, 2006. 177(3): p. 1655-60. 50. Wakabayashi, K., et al., IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology, 2006. 44(5): p. 1240-9. 51. Chang, C.H., et al., Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS One, 2015. 10(3): p. e0121320. 52. Syu, B.J., et al., Dual Roles of IFN-gamma and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine. Sci Rep, 2016. 6: p. 34884. 53. Hsueh, Y.H., et al., AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun, 2016. 66: p. 89-97. 54. Geissmann, F., et al., Development of monocytes, macrophages, and dendritic cells. Science, 2010. 327(5966): p. 656-61. 55. Kuziel, W.A., et al., Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A, 1997. 94(22): p. 12053-8. 56. Kurihara, T., et al., Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med, 1997. 186(10): p. 1757-62. 57. Sunderkotter, C., et al., Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol, 2004. 172(7): p. 4410-7. 58. Geissmann, F., S. Jung, and D.R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 2003. 19(1): p. 71-82. 59. Ziegler-Heitbrock, L., et al., Nomenclature of monocytes and dendritic cells in blood. Blood, 2010. 116(16): p. e74-80. 60. Serbina, N.V., et al., Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008. 26: p. 421-52. 61. Evans, H.G., et al., In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A, 2009. 106(15): p. 6232-7. 62. Movahedi, K., et al., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 2008. 111(8): p. 4233-44. 63. Zhu, B., et al., CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol, 2007. 179(8): p. 5228-37. 64. Liberal, R., G. Mieli-Vergani, and D. Vergani, Autoimmune hepatitis: From mechanisms to therapy. Rev Clin Esp, 2016. 216(7): p. 372-383. 65. Djilali-Saiah, I., et al., HLA class II influences humoral autoimmunity in patients with type 2 autoimmune hepatitis. J Hepatol, 2006. 45(6): p. 844-50. 66. de Boer, Y.S., et al., Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology, 2014. 147(2): p. 443-52 e5. 67. Alvarez, F., et al., International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol, 1999. 31(5): p. 929-38. 68. McFarlane, I.G., Definition and classification of autoimmune hepatitis. Semin Liver Dis, 2002. 22(4): p. 317-24. 69. Ichai, P., et al., Usefulness of corticosteroids for the treatment of severe and fulminant forms of autoimmune hepatitis. Liver Transpl, 2007. 13(7): p. 996-1003. 70. Kessler, W.R., et al., Fulminant hepatic failure as the initial presentation of acute autoimmune hepatitis. Clin Gastroenterol Hepatol, 2004. 2(7): p. 625-31. 71. Soares, P.A., et al., Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(5-6): p. 457-60. 72. Tiegs, G., J. Hentschel, and A. Wendel, A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest, 1992. 90(1): p. 196-203. 73. Kusters, S., et al., Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology, 1996. 111(2): p. 462-71. 74. Gantner, F., et al., Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology, 1995. 21(1): p. 190-8. 75. Zheng, Z.Y., S.Y. Weng, and Y. Yu, Signal molecule-mediated hepatic cell communication during liver regeneration. World J Gastroenterol, 2009. 15(46): p. 5776-83. 76. Daya, S. and K.I. Berns, Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 2008. 21(4): p. 583-93. 77. Cheung, A.K., et al., Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol, 1980. 33(2): p. 739-48. 78. Xiao, X., J. Li, and R.J. Samulski, Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol, 1996. 70(11): p. 8098-108. 79. Grimm, D., et al., In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol, 2008. 82(12): p. 5887-911. 80. McClure, C., et al., Production and titering of recombinant adeno-associated viral vectors. J Vis Exp, 2011(57): p. e3348. 81. Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44. 82. Xu, W.D., Y. Zhao, and Y. Liu, Insights into IL-37, the role in autoimmune diseases. Autoimmun Rev, 2015. 14(12): p. 1170-5. 83. Tsutsui, H., X. Cai, and S. Hayashi, Interleukin-1 Family Cytokines in Liver Diseases. Mediators Inflamm, 2015. 2015: p. 630265. 84. Wang, H.X., et al., Immune mechanisms of Concanavalin A model of autoimmune hepatitis. World J Gastroenterol, 2012. 18(2): p. 119-25. 85. Miyazawa, Y., et al., Involvement of intrasinusoidal hemostasis in the development of concanavalin A-induced hepatic injury in mice. Hepatology, 1998. 27(2): p. 497-506. 86. Kato, J., et al., Interferon-gamma-mediated tissue factor expression contributes to T-cell-mediated hepatitis through induction of hypercoagulation in mice. Hepatology, 2013. 57(1): p. 362-72. 87. Bulau, A.M., et al., In vivo expression of interleukin-37 reduces local and systemic inflammation in concanavalin A-induced hepatitis. ScientificWorldJournal, 2011. 11: p. 2480-90. 88. Takamoto, S., et al., Gender-related differences in concanavalin A-induced liver injury and cytokine production in mice. Hepatol Res, 2003. 27(3): p. 221-229. 89. Sakai, N., et al., Interleukin-37 reduces liver inflammatory injury via effects on hepatocytes and non-parenchymal cells. J Gastroenterol Hepatol, 2012. 27(10): p. 1609-16. 90. Zhao, J.J., et al., Interleukin-37 mediates the antitumor activity in hepatocellular carcinoma: role for CD57+ NK cells. Sci Rep, 2014. 4: p. 5177. 91. Gao, W., et al., Innate immunity mediated by the cytokine IL-1 homologue 4 (IL-1H4/IL-1F7) induces IL-12-dependent adaptive and profound antitumor immunity. J Immunol, 2003. 170(1): p. 107-13. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67680 | - |
dc.description.abstract | IL-37是具有抑制發炎功能的細胞激素,可以調控先天免疫反應並且對許多發炎疾病有很好的治療效果。目前,IL-37對於免疫引起之肝臟疾病的效果仍不清楚。原發性膽汁性膽管炎 (Primary biliary cholangitis, PBC)是發生在肝臟內小膽管的自體免疫疾病,浸潤的免疫細胞造成肝臟發炎,進而導致肝纖維化以及肝硬化,最後引發肝臟衰竭。在我們的研究中,我們建構表現人類IL-37的腺相關病毒 (AAV-hIL-37)於小鼠肝臟中表現來探討IL-37在PBC小鼠模式中的功能。我們在利用2-OA-OVA致敏小鼠產生PBC前三天給予AAV-hIL-37,並且在致敏小鼠後第五和第十周犧牲小鼠以分析PBC的相關指標。我們的實驗結果顯示,AAV-hIL-37並沒有減緩PBC小鼠肝臟發炎的情況,而自體抗體、浸潤細胞數以及發炎相關細胞激素在給予AAV-hIL-37以及AAV-mock兩組PBC小鼠之間也沒有差異。然而,我們發現給予感染AAV-hIL-37之293細胞的培養上清液的巨噬細胞在LPS刺激的情況下其分泌的IL-6竟顯著的上升。我們接著探討AAV-hIL-37在另一個免疫媒介肝損傷─ concanavalin A (Con-A)引起之肝炎小鼠模式的免疫調控功能。小鼠在注射Con-A前給予AAV-mock或AAV-hIL-37,我們發現,給予AAV-hIL-37的Con-A小鼠肝臟內浸潤的免疫細胞數,以及自然殺手細胞、自然殺手T細胞、樹突細胞以及嗜中性球在肝臟浸潤細胞中的比例都有顯著的上升;除此之外,給予AAV-hIL-37的Con-A小鼠血清中IFN-的表現在給Con-A一個小時後就有顯著的上升。綜合上述結果,AAV-hIL-37無法減輕PBC但是會促進Con-A引起之肝炎小鼠的肝臟發炎情形。因此,IL-37對於免疫引起之肝臟發炎疾病的免疫調控功能需要更仔細的研究。 | zh_TW |
dc.description.abstract | IL-37 is an anti-inflammatory cytokine that regulates innate immunity in vitro and shows benefits in many inflammatory disease models in vivo. However, the effects of IL-37 in immune-mediated liver diseases are still unclear. Primary biliary cholangitis (PBC) is an autoimmune disease that mainly occurs in intrahepatic bile ducts with immune cell infiltration, resulting in portal inflammation, followed by liver fibrosis, cirrhosis and eventually liver failure. Innate immunity plays a critical role in the natural history of PBC. In this study, we constructed and generated adeno-associated virus expressing human IL-37 (AAV-hIL-37) to investigate the effects of IL-37 in murine PBC. Mice were given AAV-hIL-37 three days before 2-OA-OVA immunization and PBC features were examined at 5 and 11 weeks post first immunization. Our results showed that AAV-IL-37 did not alleviate the liver inflammation of PBC mice. Autoantibodies, liver infiltrating cells and inflammatory cytokines were no differences between PBC mice administered with AAV-hIL-37 and AAV-mock. By adding culture supernatants of AAV-hIL-37 or AAV-mock transfected 293 cells to LPS stimulated thioglycollate-elicited peritoneal macrophages, we surprisingly found the culture supernatants of AAV-hIL-37 transfected cells significantly increased IL-6 secretion of macrophages. We then further investigated the effects of AAV-hIL-37 in another immune-mediated injury, concanavalin A (Con-A) induced hepatitis model. Mice were given AAV-hIL-37 or AAV-mock before Con-A injection. We found that the numbers of liver infiltrating immune cells and the frequencies of NK cells, NKT cells, dendritic cells (DC) and polymorphic nuclear cells (PMNs) were significantly increased in the liver of AAV-hIL-37 administered Con-A mice. In addition, serum IFN- of Con-A mice receiving AAV-hIL-37 was increased as soon at 1 hour after Con-A injection. Taken together, these results suggested that AAV-hIL-37 did not affect PBC whereas increased the inflammation in the liver of Con-A induced hepatitis. The immunoregulatory functions of IL-37 in the liver immune-mediated diseases need further careful studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:43:47Z (GMT). No. of bitstreams: 1 ntu-106-R04424013-1.pdf: 2139704 bytes, checksum: b9c9751fdb479fe77fa19de12ec8d96d (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents v Figure contents vii Chapter 1 Introduction 1 1.1 IL-37 2 1.2 Biological functions of IL-37 2 1.3 IL-37 and autoimmune diseases 3 1.4 Primary biliary cholangitis (PBC) 4 1.5 Pathology of PBC 4 1.6 Pathogenic factors of PBC 5 1.7 Autoantigen and autoantibodies in PBC 6 1.8 Adaptive immune response in PBC 6 1.9 Innate immune response in PBC 7 1.10 Xenobiotic induced PBC model 8 1.11 Inflammatory monocytes 9 1.12 Autoimmune hepatitis (AIH) 10 1.13 Concanavalin A induced hepatitis 11 1.14 Adeno-associated virus (AAV) 11 1.15 AAV-DJ Helper Free Bicistronic Expression System (GFP) 12 1.16 Specific aims 13 Chapter 2 Materials and Methods 14 2.1 Mice 15 2.2 RNA extraction and cDNA synthesis 15 2.3 Polymerase chain reaction (PCR) 15 2.4 Quantitative PCR (qPCR) 16 2.5 AAV packaging 16 2.6 AAV purification 17 2.7 AAV concentration and titration 18 2.8 AAV injection 19 2.9 Preparation of 2-OA-OVA 19 2.10 2-OA-OVA/-GalCer induced PBC murine model 20 2.11 Serum sampling 21 2.12 Serum anti-2-OA-OVA and anti-mPDC-E2 IgG and IgM level 21 2.13 Liver perfusion and isolation of liver mononuclear cell (LMNC) 22 2.14 Flow cytometry analysis 23 2.15 Exogenous IL-37 functional assay 24 2.16 Con-A induced acute hepatitis mice model 24 2.17 Statistical analysis 24 Chapter 3 Results 25 3.1 Immune responses were induced at different doses of 2-OA-OVA immunization 26 3.2 Enhanced liver leukocytes at different doses of 2-OA-OVA immunization 26 3.3 Liver infiltrating monocytes and PMNs were detected at early as 3 weeks in 2-OA-OVA immunized mice 27 3.4 AAV-expressing human IL-37 in the liver of PBC mice did not affect the severity of PBC 28 3.5 Exogenous IL-37 enhanced the activation of macrophage in vitro 30 3.6 AAV-expressing human IL-37 increased the liver inflammation of concanavalin A induced acute hepatitis 31 Chapter 4 Discussion 33 Figures 39 Table 54 Table 1. Primer pairs used in this study 55 References 56 Appendix 63 Appendix 1. Gating strategy of myeloid cells 64 | |
dc.language.iso | zh-TW | |
dc.title | 探討IL-37於免疫媒介之肝臟疾病之免疫調控作用 | zh_TW |
dc.title | Study on the Immunomodulatory Effects of IL-37 in Immune-Mediated Liver Diseases | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊雅婷,陶秘華,黃麗蓉 | |
dc.subject.keyword | IL-37,肝臟免疫疾病,原發性膽汁性膽管炎,急性肝損傷,AAV, | zh_TW |
dc.subject.keyword | IL-37,immune-mediated liver disease,primary biliary cholangitis,acute liver injury,AAV, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201702089 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。