Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67676
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳義裕(Yih-Yuh Chen)
dc.contributor.authorShu-Wei Wangen
dc.contributor.author王書偉zh_TW
dc.date.accessioned2021-06-17T01:43:34Z-
dc.date.available2018-08-10
dc.date.copyright2017-08-10
dc.date.issued2017
dc.date.submitted2017-07-26
dc.identifier.citation[1] I. H. Lee, Y. J. Oh, S. Kim, J. Lee, and K. J. Chang, Comput. Phys. Commun. 203,110 (2016).
[2] Q. Zhu, A. R. Oganov, Q. F. Zeng, and X. F. Zhou, Chem. Model. 12, 219 (2016).
[3] X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, J. Chem. Phys. 138, 114101 (2013).
[4] A. R. Oganov and C. W. Glass, J.Phys.: Condens. Matter 20, 64210 (2006).
[5] A. R. Oganov, C. W. Glass, and S. Ono, Earth Planet. Sci. Lett. 241, 95 (2006).
[6] F. H. Stillinger, Phys. Rev. E 59, 48 (1999).
[7] S. Kirkpatrick, J. Stat. Phys. 59, 975 (1999).
[8] R. Biswas and D. R. Hamann, Phys. Rev. B 34, 895 (1986).
[9] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, Science 220, 671 (1983).
[10] J. Behler, R. Martoňák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 100, 185501 (2008).
[11] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).
[12] R. Martoňák, A. Laio, and M. Parrinello, Phys. Rev. Lett. 90, 075503 (2003).
[13] D. Wales and H. Scheraga, Science 285, 1368 (1999).
[14] D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997).
[15] S. Goedecker, J. Chem. Phys. 120, 9911 (2004).
[16] F. J. Solis and R. J. B. Wets, Math. Operat. Res. 6, 19 (1981).
[17] C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
[18] C. J. Pickard and R. J. Needs, Phys.: Condens. Matter 23, 053201 (2011).
[19] C. J. Pickard and R. J. Needs, APL Mater. 4, 053210 (2016).
[20] D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 95 (1988).
[21] L. D. Lloyd, R. L. Johnston, and S. Salhi, J. Comp. Chem. 26, 1069 (2005).
[22] R. Eberhart and J. Kennedy, Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on, 39 (1995).
[23] M. R. AlRashidi and M. E. El-Hawary, IEEE Trans. Evol. Comput. 13, 913 (2009).
[24] Eberhart and Y. Shi, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul 1, 81 (2001).
[25] Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 94116 (2010).
[26] Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, J. Phys.: Condens. Matter 27, 203203 (2015).
[27] C. W. Glass, A. R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006).
[28] Q. Zhu, A. R. Oganov, C. W. Glass, and H. T. Stokes, Acta Cryst. B 68, 215 (2012).
[29] C. P. Massen and J. P. Doye, Phys. Rev. E 75, 037101 (2007).
[30] R. P. Bell, Proc. R. Soc. London, Ser. A 154, 414 (1936).
[31] M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935).
[32] A. D. Mighell, V. L. Himes, and J. R. Rodgers, Acta Cryst. A 39, 737 (1983).
[33] V. S. Urusov and T. N. Nadezhina, J. Struct. Chem. 50, 22 (2009).
[34] D. J. Wales, Chem. Phys. Lett. 285, 330 (1998).
[35] Q. Zhu, A. R. Oganov, C. W. Glassc, and H. T. Stokes, Acta Cryst. B 68, 215 (2012).
[36] H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, Comput. Mater. Sci. 112, 406 (2016).
[37] M. C. Nguyen, J. H. Choi, X. Zhao, C. Z. Wang, Z. Zhang, and K. M. Ho, Phys. Rev. Lett. 111, 165502 (2013).
[38] J. Liu, J. F. Lin, and V. B. Prakapenka, Sci. Rep. 5, 7640 (2015).
[39] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, and A. Kirov, ”Crystallography online: Bilbao Crystallographic Server” Bulg. Chem. Commun. 43(2), 183 (2011).
[40] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Z. Krist. 221, 15 (2006).
[41] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Acta Cryst. A 62, 115 (2006).
[42] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (964).
[43] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[44] J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[45] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
[46] J. P. Perdew and K. Burke, Int. J. Quant. Chem. 57, 309 (1996).
[47] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[48] V. Ozoliņs̆ and M. Körling, Phys. Rev. B 48, 18304 (1993).
[49] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[50] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[51] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[52] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
[53] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
[54] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev.
Lett. 24, 246401 (2004).
[55] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[56] G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).
[57] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Zeitschrift fuer Kristallographie 220, 567 (2005).
[58] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côt;é, T. Deutsch, L. Genovese, P. Ghosez,
M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).
[59] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21, 395502 (19pp) (2009).
[60] K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).
[61] The elk fp-lapw code, http://elk.sourceforge.net/ (visited on 05/19/2017).
[62] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).
[63] A. Ranman, Phys. Rev. 136, A405 (1964).
[64] L.Verlet, Phys. Rev. 159, 98 (1967).
[65] W. C. Swope, H. Andersen, P. Berens, and K. Wilson, J. Chem. Phys. 76, 637 (1982).
[66] R. W. Hockney, Methods Comput. Phys. 9, 136 (1970).
[67] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[68] S. Nosé, Mol. Phys. 52, 255 (1984).
[69] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[70] P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17953 (1994).
[71] G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).
[72] S. Grimme, J. Comput. Chem. 27, 1787 (2006).
[73] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
[74] J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
[75] J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 22, 022201 (2010).
[76] T. J. Lin, C. R. Hsing, C. M. Wei, and J. L. Kuo, Phys. Chem. Chem. Phys. 18, 2736 (2016).
[77] D. V. Gruznev, L. V. Bondarenko, A. V. Matetskiy, A. N. Mihalyuk, A. Y. Tupchaya, O. A. Utas, S. V. Eremeev, C. R. Hsing, J. P. Chou, C. M. Wei, A. V. Zotov, and A. A. Saranin, Sci. Rep. 6, 19446 (2016).
[78] A. N. Mihalyuk, A. A. Alekseev, C. R. Hsing, C. M. Wei, D. V. Gruznev, L. V. Bondarenko, A. V. Matetskiy, A. Y. Tupchaya, A. V. Zotov, and A. A. Saranina, Surf. Sci. 649, 14 (2016).
[79] D. V. Gruznev, L. V. Bondarenko, A. V. Matetskiy, A. Y. Tupchaya, E. N. Chukurov, C. R. Hsing, C. M. Wei, S. V. Eremeev, A. V. Zotov, and A. A. Saranina, Phys. Rev. B 92, 245407 (2015).
[80] D. V. Gruznev, L. V. Bondarenko, A. V. Matetskiy, A. Y. Tupchaya, A. A. Alekseev, C. R. Hsing, C. M. Wei, S. V. Eremeev, A. V. Zotov, and A. A. Saranina, Phys. Rev. B 91, 035421 (2015).
[81] J. P. Chou, C. R. Hsing, C. M. Wei, C. Cheng, and C. M. Chang, J.Phys.: Condens. Matter 25, 125305 (2013).
[82] S. Ono, T. Kikegawa, and Y. Ohishi, Am. Mineral. 92, 1246 (2007).
[83] C. J. Pickard and R. J. Needs, Phys. Rev. B 91, 104101 (2015).
[84] K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai, M. Kobayashi, A. Onodera, O. Shimomura, and T. Kikegawa, Am. Mineral. 86, 997 (2001).
[85] A. R. Oganov, C. W. Glass, and S. Ono, Earth Planet. Sc. Lett. 241, 95 (2006).
[86] S. Ono, Am. Mineral. 90, 667 (2005).
[87] S. Arapan, J. S. de Almeida, and R. Ahuja, Phys. Rev. Lett. 98, 268501 (2007).
[88] S. Arapan and R. Ahuja, Phys. Rev. B 82, 184115 (2010).
[89] X. Ming, X. L. Wang, F. Du, J. W. Yin, C. Z. Wang, and G. Chen, J. Alloys Compd. 510, L1 (2012).
[90] J. Santillán and Q. Williams, Phys. Earth Planet. Inter. 143-144, 291 (2004).
[91] J. Lancaster, Tribology Int. 23, 371 (1990).
[92] K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Nano Lett. 10, 4067 (2010).
[93] H. Zaidi, D. Paulmier, and J. Lepage, Appl. Surf. Sci. 44, 221 (1990).
[94] K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 96, 166103 (2006).
[95] K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008).
[96] Y. Liu, X. Li, P. Hu, and G. Hu, Int. J. Refrig. 50, 80 (2015).
[97] Y. Zheng, C. Su, J. Lu, and K. P. Loh, Angew. Chem. Int. Ed. 52, 8708 (2013).
[98] D. W. Boukhvalov, Y.-W. Son, and R. S. Ruoff, ACS Catal. 4, 2016 (2014).
[99] V. Chen, H. Pan, R. Jacobs, S. Derakhshana, and Y. S. Shon, New J. Chem. 41, 177 (2017).
[100] R. R. Q. Freitas, R. Rivelino, F. de Brito Mota, and C. M. C. de Castilho, J. Phys. Chem. A 115, 12348 (2011).
[101] O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 77, 125416 (2008).
[102] J. M. H. Kroes, F. Pietrucci, K. Chikkadi, C. Roman, C. Hierold, and W. Andreoni, Appl. Phys. Lett. 108, 033111 (2016).
[103] J. Sabio, C. Seoànez, S. Fratini, F. Guinea, A. H. C. Neto, and F. Sols, Phys. Rev. B 77, 195409 (2008).
[104] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Materials 6, 652 (2007).
[105] O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 79, 235440 (2009).
[106] D. R. Hamann, Phys. Rev. B 55, R10157 (1997).
[107] R. M. Ribeiro, N. M. R. Peres, J. Coutinho, and P. R. Briddon, Phys. Rev. B 78, 075442 (2008).
[108] X. Lin, J. Ni, and C. Fang, J. Appl. Phys. 113, 034306 (2013).
[109] A. Ambrosetti and P. L. Silvestrelli, J. Phys. Chem. C 115, 3695 (2011).
[110] J. Ma, A. Michaelides, D. Alfé, L. Schimka, G. Kresse, and E. Wang, Phys. Rev. B 84, 033402 (2011).
[111] I. Hamada, Phys. Rev. B 86, 195436 (2012).
[112] J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).
[113] R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. R’ios, J.Phys.: Condens. Matter 22, 023201 (2010).
[114] G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi, and G. Galli, J. AM. CHEM. SOC. 130, 1871 (2008).
[115] M. Ma, G. Tocci, A. Michaelides, and G. Aeppli, Nature Materials 15, 66 (2016).
[116] D. Frenkel and B. Smit, Understanding molecular simulation (Academic Press, 1996).
[117] X. Michalet, Phys. Rev. E 82, 041914 (2010).
[118] T. Li and M. G. Raizen, Ann. Phys. 525, 281 (2013).
[119] S. L. da Silva, J. T. G. Junior, R. L. da Silva, E. R. Viana, and F. F. Leal, ArXiv e-prints (2014).
[120] E. Fomin, M. Tatarkhanov, T. Mitsui, M. Rose, D. F. Ogletree, and M. Salmeron, Surf. Sci. 600, 542 (2006).
[121] T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science 297, 1850 (2002).
[122] M. Dürr and U. Höfer, Prog. Surf. Sci 88, 61 (2013).
[123] K. Zhuo, “Electronic, thermoelectric and vibrational properties of silicon nanowires and copper chalcogenides”, PhD thesis (Georgia Institute of Technology, 2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67676-
dc.description.abstract隨機結構搜尋已被證明是一種相當強大的方法可用來尋找材料的穩定結構。在高維度的結構空間中,一個全然隨機的取樣固然需要,但卻難免曠日費時,甚至幾乎不可能找到全域的極小值。因此在此方法中,如何利用一些合理的限制產生適當的初始結構成為一個相當重要的問題,例如加上系統對稱性以減少結構空間的獨立維度,或是加上化學鍵結訊息來到達結構空間的低能量區域。在此論文中,我們提出“物件” 的概念,使搜尋複雜結構系統全域能量極小值的過程可以被限制在大幅縮減後的結構空間裡,並得以在合理的時間內應用於現實中。其中,物件的定義為一個或一群原子(例如分子或碳酸根),帶有由Wyckoff 位置所定義的對稱性;我們檢驗許多的系統並藉此展示物件式隨機結構搜尋法的優勢,包括高壓碳酸鹽(碳酸鈣與碳酸亞鐵)和吸附在石墨烯上的水分子團(一個到四個) 系統。除此之外,為了要驗證物件式隨機結構搜尋法暗示單一水分子在石墨烯上的快速擴散特性,我們更進一步利用了分子動力學模擬來分析其溫度效應下的影響。zh_TW
dc.description.abstractRandom structure searching has been proved to be a powerful approach to search and find the global minimum and the metastable structures. A true random sampling is in principle needed yet it would be highly time-consuming
and/or practically impossible to find the global minimum for the complicated systems in their high-dimensional configuration space. Thus the implementations of reasonable constraints, such as adopting system symmetries to reduce the independent dimension in the structural space and imposing chemical information to reach and relax into low-energy regions, are the most essential issues in the approach. In this thesis, we propose the concept of object which is composed of an atom or a set of atoms (such as molecules or carbonates) carrying symmetry defined by one of the Wyckoff positions of space group and is developed into a method called Random Structure Searching With Object (RSSWO). The method allows the searching of global minimum for a complicated system to be confined in a greatly-reduced structural space and become accessible in practice. We examined several systems, including high-pressure carbonates (CaCO3 and FeCO3) and water clusters (up to four H2O) absorbed on graphene, to demonstrate the power of object concept in random structure searching. Moreover, in order to verify the fast diffusion property of single water molecule absorbed on graphene indicated by RSSWO, a molecular dynamics simulation was performed to illustrate the influence of temperature effect on the system.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:43:34Z (GMT). No. of bitstreams: 1
ntu-106-R04245009-1.pdf: 12878252 bytes, checksum: 1f178f2a9898691243f1c0a16dfa3d65 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 The advantages of computational simulations . . . . . . . . . . . . . . . 1
1.2 The difficulties of searching in the configuration space . . . . . . . . . . 2
1.3 Constraints of random structure searching method . . . . . . . . . . . . . 3
1.4 Motivation of developing Random Structure Searching With Object (RSSWO) 4
2 Methodology 6
2.1 The concept of object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Random Structure Searching With Object (RSSWO) . . . . . . . . . . . 9
2.3 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Results and discussion 15
3.1 The high-pressure structures of CaCO3 and FeCO3 system . . . . . . . . 16
3.1.1 The high-pressure stable structures of CaCO3 . . . . . . . . . . . 16
3.1.2 Targeting the R-3c structure of FeCO3 . . . . . . . . . . . . . . . 18
3.2 The adsorption and diffusion of small water clusters on graphene . . . . . 22
3.2.1 The adsorption of small water clusters on graphene at zero temperature . . . . . . . . . . . . . . . . . . . . 22
3.2.2 The study of single water molecule on graphene using ab initio MD simulation . . . . . . . . . . . . . . . . . 30
4 Conclusions 41
A The adsorption process of water cluster on graphene 43
B Checking equilibrium in MD simulation 45
References 47
dc.language.isoen
dc.subject物件zh_TW
dc.subject隨機結構搜尋zh_TW
dc.subject高壓碳酸鹽zh_TW
dc.subject水分子團在石墨烯上的吸附zh_TW
dc.subjectobjecten
dc.subjecthigh-pressure carbonatesen
dc.subjectwater adsorption on grapheneen
dc.subjectrandom structure searchingen
dc.title物件式隨機結構搜尋方法之應用zh_TW
dc.titleThe Application of Random Structure Searching with Objecten
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor魏金明(Ching-Ming Wei)
dc.contributor.oralexamcommittee郭光宇(Guang-Yu Guo)
dc.subject.keyword隨機結構搜尋,物件,高壓碳酸鹽,水分子團在石墨烯上的吸附,zh_TW
dc.subject.keywordrandom structure searching,object,high-pressure carbonates,water adsorption on graphene,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201702005
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
12.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved