Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶璨
dc.contributor.authorChih-Jui Chengen
dc.contributor.author程致瑞zh_TW
dc.date.accessioned2021-05-17T09:17:40Z-
dc.date.available2017-07-27
dc.date.available2021-05-17T09:17:40Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation[1] Yin, J., G. Li, X. Ren, G. Herrler. Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology 127: 335–347 (2007).
[2] Qing, G., L. C. Ma, A. Khorchid, G. V. T. Swapna, T.K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, M. Inouye. Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology 22: 877–882 (2004).
[3] Schein, C.H., M. H. M. Noteborn. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6: 291–294 (1988).
[4] Esposito, D., D. K. Chatterjee. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology 17: 353–358 (2006).
[5] Linskens, M. H., P. D. Grootenhuis, M. Blaauw, B. Huisman-de Winkel, A. Van Ravestein, P. J. Van Haastert, J. C. Heikoop. Random mutagenesis and screening of complex glycoproteins: expression of human gonadotropins in Dictyostelium discoideum. FASEB. Journal 13: 639–645 (1999).
[6] Hitzeman, R. A., F. E. Hagie, H. L. Levine, D. V. Goeddel, G. Ammerer, B. D. Hall. Expression of a human gene for interferon in yeast. Nature 293: 717–722 (1981).
[7] Antoniukas, L., H. Grammel, U. Reichl. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. Journal of Biotechnology 124: 347–362 (2006).
[8] DiMiceli, L., V. Pool, J. M. Kelso, S. V. Shadomy, J. Iskander, V.A.E.R.S. Team. Vaccination of yeast sensitive individuals: review of safety data in the US vaccine adverse event reporting system (VAERS). Vaccine 24: 703–707 (2006).
[9] Cregg, J. M., J. L. Cereghino, J. Shi, D. R. Higgins. Recombinant protein expression in Pichia pastoris. Molecular Biotechnology 16: 23–52 (2000).
[10] Cees, A. M., J. J. Hondel, P. J. Punt, R. F. M. Gorcom. Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie Leeuwenhoek 61: 153–160 (1992).
[11] Sims, A. H., M. E. Gent, K. Lanthaler, N. S. Dunn-Coleman, S. G. Oliver, G. D. Robson. Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Applied And Environmental Microbiology 71: 2737–2747 (2005).
[12] Jayapal, K. P., K. F. Wlaschin, M. G. S. Yap, W. Hu. Recombinant protein therapeutics from CHO cells - 20 years and counting. Chemical Engineering Progress 103: 40–47 (2007).
[13] Barta, A., K. Sommengruber, D. Thompson, K. Hartmuth, M. A. Matzke, A. J. M. Matzke. The expression of a napoline synthase human growth hormone chimeric gene in transformed tobacco and sun flower callus tissue. Plant Molecular Biology 6: 347–357 (1986).
[14] Hiatt, A., R. Cafferkey, K. Bowdish. Production of antibodies in transgenic plants. Nature 342: 76–78 (1989).
[15] Hood, E. E., D. R. Witcher, S. Maddock, T. Meyer, C. Baszczynski, M. Bailey, P. Flynn, J. Register, L. Marshall, D. Bond, E. Kulisek, A. Kusnadi, R. Evangelista, Z. Nikolov, C. Wooge, R. J. Mehigh, R. Hernan, W. K. Kappel, D. Ritland, L. C. Ping, J. A. Howard. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Molecular Breeding 3: 291–306 (1997).
[16] Kusnadi, A., Z. L. Nikolov, J. A. Howard. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnology and Bioengineering 56: 473–484 (1997).
[17] Giddings, G., G. Allison, D. Brooks, A. Carter. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18: 1151–1155 (2000).
[18] Kapusta, J., A. Modelska, M. Figlerowicz, T. Pniewski, M. Letellier, O. Lisowa, V. Yusibov, H. Koprowski, A. Plucienniczak, A. B. Legocki. A plant-derived edible vaccine against hepatitis B virus. FASEB. Journal 13: 1796–1799 (1999).
[19] Tacket, C. O, H. S. Mason, G. Losonsky, J. D. Clements, M. M. Levine, C. J. Arntzen. Immunogenicity in humans of a recombinant bacterial-antigen delivered in transgenic potato. Nature Medicine 4: 607–609 (1998).
[20] Tacket, C. O, H. S. Mason, G. Losonsky, M. K. Estes, M. M. Levine, C. J. Arntzen. Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. The Journal of Infectious Diseases 182: 302–305 (2000).
[21] Harl, N. E., R. G. Ginder, C. R. Hurburgh, S. Moline. The StarLink Situation. Food and Chemical News (2000).
[22] United States Department of Agriculture (USDA). Release No. 0306.06 (2006).
[23] Guillamón, E., A. García-Lafuente, M. Lozano, M. D'Arrigo, M. A. Rostagno, A. Villares, , J. A. Martínez. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 81: 715–723 (2010).
[24] Kiho, T., J. Hui, A. Yamane, S. Ukai. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biological & Pharmaceutical Bulletin 16: 1291–1293 (1993).
[25] Nakai, R., H. Masui, H. Horio, M. Ohtsuru. Effect of maitake (Grifola frondosa) water extract on inhibition of adipocyte conversion of C3H10T1/2B2C1 cells. Journal of Nutritional Science and Vitaminology 45: 385–389 (1999).
[26] Ooi, V. E., F. Liu. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry 7: 715–729 (2000).
[27] Wasser, S. P., A. L. Weis. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective. Critical Reviews in Immunology 19: 65–96 (1999).
[28] Binninger, D. M., C. Skrzynia, P. J. Pukkila, L. A. Casselton. DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO Journal 6: 835–840 (1987).
[29] Munoz-Rivas, A., C. A. Specht, B. J. Drummond, E. Froeliger, C. P. Novotny, R. C. Ullrich. Transformation of the basidiomycete, Schizophyllum commune. Molecular and General Genetics 205: 103–106 (1986).
[30] van de Rhee, M. D., P. M. Graca, H. J. Huizing, H. Mooibroek. Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Molecular General Genetics 250: 252–258 (1996).
[31] Yanai, K., K. Yonekura, H. Usami, M. Hirayama, S. Kajiwara, T. Yamazaki, K. Shishido, T. Adachi. The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Bioscience Biotechnology and Biochemistry 60: 472–475 (1996).
[32] 范嫺蘄,以甘油醛-3-磷酸脫氫酶基因啟動子研究美白菇轉形系統,國立臺灣大學微生物與生化學研究所碩士論文,2007。
[33] Pegler, D. N. Useful fungi of the world: the shii-take, shimeji, enoki-take, and nameko mushroom. Mycologist 17: 3–5 (2003).
[34] Combs, G. F. Jr., W. P. Gray. Chemopreventive agents: selenium. Pharmacology & Therapeutics 79: 179–192 (1998).
[35] Ikekawa, T., H. Saitoh, W. Feng, H. Zhang, L. Li, T. Matsuzawa. Antitumor activity of Hypsizigus marmoreus. I. Antitumor activity of extracts and polysaccharides. Chemical & Pharmaceutical Bulletin 40: 1954–1957 (1992).
[36] Ikekawa, T. Bunashimeji. Hypsizigus marmoreus: antitumor activity of extracts and polysaccharides. Food Reviews International, 11: 207–209 (1995).
[37] Lam, S. K., T. B. Ng. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochemical and Biophysical Research Communications 285: 1071–1075 (2001).
[38] Tsuchida, K., Y. Aoyagi, S. Odani, T. Mita, M. Isemura. Isolation of a novel collagen-binding protein from the mushroom, Hypsizigus marmoreus, which inhibits the Lewis lung carcinoma cell adhesion to type IV collagen. Journal of Biological Chemistry 270: 1481–1484 (1995).
[39] Wong, J. H., H. X. Wang, T. B. Ng. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Applied Microbiology and Biotechnology 81: 669–674 (2008).
[40] Akihisa, T., S. G. Franzblau, H. Tokuda, M. Tagata, M. Ukiya, T. Matsuzawa, K. Metori, Y. Kimura, T. Suzuki, K. Yasukawa. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus. Biological & Pharmaceutical Bulletin 28: 1117–1119 (2005).
[41] Chang, J. S., J. K. Son, G. Li, E. J. Oh, J. Y. Kim, S. H. Park, J. T. Bae, H. J. Kim, I. S. Lee, O. M. Kim, N. Kozukue, J. S. Han, M. Hirose, K. R. Lee. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol A9, isolated from Hypsizigus marmoreus. Cancer Letters 212: 7–14 (2004).
[42] De Groo, M. J., P. Bundtock, P. J. Hooykaas, A. G. Beijersbergen. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 16:839–842 (1998).
[43] Doring, F., M. Klapper, S. Theis, H. Daniel. Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochemical and Biophysical Research Communications 250: 531–535 (1998).
[44] Punt, P. J., R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, C. A. van den Hondel. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117–124 (1987).
[45] Piechaczyk, M., J. M. Blanchard, L. Marty, C. Dani, F. Panabieres, S. El Sabouty, P. Fort, P. Jeanteur. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Research 12: 6951–6963 (1984).
[46] Godio, R., R. Fouces, E. Guniña, J. Martin. Agrobacterium tumefaciens-mediated transformation of an antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Current Genetics 46: 287–294 (2004).
[47] Hanif, M., A.G. Pardo, M. Gorfer, M. Raudaskoski. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Current Genetics 41: 183–188 (2002).
[48] 郭俊毅,食用菇異源基因表現系統之建立及其應用. 國立臺灣大學微生物與生化學硏究所博士論文,2008。
[49] Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chemical Reviews 102: 759–781 (2002).
[50] Zhang, G., V. Gurtu, S. R. Kain. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications 227: 707–711 (1996).
[51] Borovinskaya, M. A.,S. Shoji, K. Fredrick, J. H. D. Cate. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14: 1590–1599 (2008).
[52] Gonzalez, A., A. Jimenez, D. Vazquez, J. E. Davies, D. Schindler. Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochimica et Biophysica Acta 521: 459–469 (1978).
[53] Broomfield, P. L. E. J. A. Hargreaves. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Current Genetics 22: 117–121 (1992).
[54] Honda, Y., T. Matsuyama, T. Irie, T. Watanabe, M. Kuwahara. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Current Genetics 37: 209–212 (2000).
[55] Irie, T., T. Sato, K. Saito, Y. Honda, T. Watanabe, M. Kuwahara, H. Enei. Construction of a homologous selectable marker gene for Lentinus edodes transformation. Bioscience, Biotechnology, and Biochemistry 67: 2006–2009 (2003).
[56] Ito, Y., H. Muraguchi, Y. Seshime, S. Oita, S. O. Yanagi. Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b 560 subunit of succinate dehydrogenase complex (Complex II). Molecular Genetics and Genomics 272: 328–335 (2004).
[57] 陳佳珮,利用農桿菌媒介轉形法研究美白菇表達系統,國立臺灣大學微生物與生化學硏究所碩士論文,2009。
[58] Burns, C., K. E. Gregory, M. Kirby, M. K. Cheung, M. Riquelme, T. J. Elliott, M. P. Challen, A. Bailey, G. D. Foster. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genetics and Biology 42: 191–199 (2005).
[59] Lugones, L. G., K. Scholtmeijer, R. Klootwijk, J. G. Wessels. Introns are necessary for mRNA accumulation in Schizophyllum commune. Molecular Microbiology 32: 681–689 (1999).
[60] Ma, B., M. B. Mayfield, M. H. Gold. The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Applied and Environmental Microbiology 67: 948–955 (2001).
[61] Arakawa, T., D. K. Chong, J. L. Merritt, W. H. Langridge. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Research 6: 403–413 (1997).
[62] Irie, T., Y. Honda, T. Hirano, T. Sato, H. Enei, T. Watanabe, M. Kuwahara. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Applied Microbiology and Biotechnology 56: 707–709 (2001).
[63] Bundock, P., P. J. J. Hooykaas. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proceedings of the National Academy of Sciences 93: 15272–15275 (1996).
[64] de Groot, M. J. A., P. Bundock, P. J. J. Hooykaas, A. G.M. Beijersbergen. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 16: 839–842 (1998).
[65] Kunik, T., T. Tzfira, Y. Kapulnik, Y. Gafni, C. Dingwall, V. Citovsky. Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences 98: 1871–1876 (2001).
[66] 徐韻涵,以農桿菌媒介轉形法進行金針菇表達系統之研究,國立臺灣大學微生物與生化學硏究所碩士論文,2008。
[67] Wang, J., L. Guo, K. Zhang, Q. Wu, J. Lin. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresource Technology 99(17): 8524–8527 (2008).
[68] Gelvin, S. Agrobacterium-mediated plant transformation: the biology behind the 'gene-jockeying” tool. Microbiology and Molecular Biology Reviews 67: 16–37 (2003).
[69] McCullen, C., A. Binns. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annual Review of Cell and Developmental Biology 22: 101–127 (2006).
[70] Tzfira, T., V. Citovsky. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology 17: 147–154 (2006).
[71] Christie, P.J., K. Atmakuri, V. Krishnamoorthy, S. Jakubowski, E. Cascales. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology 59: 451–485 (2005).
[72] Gelvin, S. B. Finding a way to the nucleus. Current Opinion in Microbiology, 13: 53–58 (2010).
[73] Tzfira, T., J. Li, B. Lacroix, V. Citovsky. Agrobacterium T-DNA integration: molecules and models. TRENDS in Genetics 20(8): 375-383. (2004).
[74] Zhu, T., M. Guo, Z. Tang, M. Zhang, Y. Zhuang, J. Chu, S. Zhang. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. Journal of Applied Microbiology 107: 954–963 (2009).
[75] Gelvin S. B., S. I. Kim. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochimica et Biophysica Acta 1769: 410–421 (2007).
[76] Kemppainen, M. J. Pardo A. G. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA – triggering in the mycorrhizal fungus Laccaria bicolor. Microbial Biotechnology 3: 178–200 (2010).
[77] Wälti, M.A., C. Villalba, R.M. Buser, A. Grünler, M. Aebi, M. Künzler. Targeted gene silencing in the model mushroom Coprinus cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot Cell 5: 732–744 (2006).
[78] Nevalainen, K. M., V. S. Te'o, P. L. Bergquist. Heterologous protein expression in filamentous fungi. Trends in Biotechnology 23: 468–474 (2005).
[79] Obembe, O. O., J. O. Popoola, S. Leelavathi, S. V. Reddy. Advances in plant molecular farming. Biotechnology Advances 29: 210–222 (2011).
[80] Michielse, C. B., P. J. Hooykaas, C. A. van den Hondel, A. F. Ram. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics 48: 1–17 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6764-
dc.description.abstract分子農場(molecular farming)泛指利用轉基因植物生產具有高價值的重組蛋白質,如醫藥用蛋白質。菇類於分子農場之應用近年來也受到重視,建立完善之菇類異源表達系統將有助於分子農場的發展。過去研究已成功應用於多種菇類進行異源基因表現。農桿菌媒介轉形法(Agrobacterium tumefaciens-mediated transformation, ATMT)具有外源基因穩定性高的優點,然而缺點是異源蛋白質表現量偏低。本研究使用美白菇(Hypsizygus marumoreus)為表達宿主,進行農桿菌媒介重複轉形,期望能提升轉形株異源蛋白質表現量。本研究先以帶有萎銹靈抗性基因(carboxin resistance gene , cbxr)為篩選標記與綠色螢光蛋白質基因(enhanced green fluorescent protein , egfp)為報導基因的農桿菌進行第一次轉形,接著再對該轉形株以相同之農桿菌進行第二次轉形以取得單一抗藥性之二次轉形株;或是使用另一種帶有潮黴素抗性基因(hygromycin phosphotransferase, hph)為篩選標記與綠色螢光蛋白質基因的農桿菌進行第二次轉形,以取得雙重抗藥性之二次轉形株,篩選過後比較一次轉形株母體與二次轉形株的綠色螢光蛋白質表現量。結果顯示單一抗藥性之二次轉形株其綠色螢光蛋白質最高為每克總可溶性蛋白質中含有319.58 ng,百分比為3.19*10-5,係一次轉形株母體的4.25倍,另外雙重抗藥性之二次轉形株其綠色螢光蛋白質最高為每克總可溶性蛋白質中含有418.83 ng,百分比為4.18*10-5,係一次轉形株母體的5.5倍,顯示農桿菌媒介重複轉形法可以提升異源蛋白質表現量。zh_TW
dc.description.abstractMushroom molecular farming recently attracts tremendous attention because of its application pontentials and the advantages over plant molecular farming. Agrobacterium tumefaciens-mediated transformation (ATMT) is commonly used in mushroom transformation but its application was limited due to the low heterologous gene expression. In this study, Hypsizygus marumoreus was chosen as the expression host and was transformed by multiple ATMT in order to enhance heterologous protein expression. For the first step of multiple ATMT, A. tumefaciens harboring p0390-Cbx-Hiegfp, a Ti-plasmid contains carboxin resistance gene (cbxr) and enhanced green fluorescent protein (egfp), was used for transformation. The single transformants were re-transformed by A. tumefaciens harboring p0390-AH-Aiegfp, which contains hygromycin phosphotransferase (hph) and egfp, or re-transformed by A. tumefaciens harboring p0390-Cbx-Hiegfp. Finally, EGFP was analyzed by ELISA and the copy number of egfp was determined by real-time PCR. This study demonstrated that the heterologous gene expression was enhanced by multiple ATMT in H. marumoreus. The highest EGFP production in two-vector double transformants was 418.83 ng/g TSP (total soluble protein), which increased up to 5.5 folds in comparison with its parental single transformant. In one-vector double transformants, the highest EGFP production was 319.58 ng/g TSP, which raised to 4.25 folds and the transgene copy number accordingly increased, too. Multiple ATMT described in this study provides a new approach in improvement of the heterologous gene expression.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:17:40Z (GMT). No. of bitstreams: 1
ntu-101-R99b22039-1.pdf: 3650845 bytes, checksum: d7978e6876d9e02d75c44c734db5f7d0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
一、基因工程與異源表達 1
1. 基因工程 1
2. 異源表達系統 1
二、分子農場 4
1. 重組蛋白質生產 4
2. 食用疫苗 4
3. 發展現況與面臨問題 5
三、食用菇類分子農場 6
1. 菇類簡介 6
2. 食用菇類分子農場 6
四、美白菇 8
1. 起源 8
2. 栽培優勢 8
3. 營養價值 8
4. 藥理潛力 9
五、食用菇類異源表達系統 10
1. 表現載體 10
2. 轉形策略 12
六、農桿菌轉形機制 14
1. Ti質體簡介 14
2. 毒性蛋白質活化 14
3. T-DNA傳送 14
4. T-DNA嵌入 14
七、研究動機與目的 16
第二章 材料與方法 17
一、實驗材料 17
1. 實驗菌株 17
2. 質體 17
3. 引子 18
二、實驗方法 19
1. 表現載體之建構 19
2. 農桿菌媒介轉形法 20
3. 農桿菌媒介重複轉形法 21
4. 轉形株分析 22
第三章 結果 26
一、表現載體建構 26
1. 重組質體確認 26
二、農桿菌媒介轉形法 26
1. 表現載體轉入農桿菌 26
2. 美白菇與農桿菌共培養 26
三、農桿菌媒介重複轉形法 27
1. 二次轉形株篩選 27
四、轉形株分析 27
1. 轉形株DNA分析 27
2. 轉形株蛋白質分析 28
第四章 討論 29
一、轉形株表現量差異 29
二、轉形株純度 30
三、農桿菌媒介轉形法探討 30
四、重複轉形法探討 31
第五章 結論與未來展望 33
第六章 圖表 34
第七章 參考文獻 64
dc.language.isozh-TW
dc.title利用農桿菌媒介重複轉形法提升美白菇異源蛋白質表現量zh_TW
dc.titleEnhancement of protein expression in Hypsizygus marumoreus by multiple Agrobacterium tumefaciens-mediated transformationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥,常怡雍,楊健志,李昆達
dc.subject.keyword分子農場,農桿菌媒介轉形法,美白菇,重複轉形,zh_TW
dc.subject.keywordmolecular farming,Agrobacterium tumefaciens-mediated transformation,Hypsizygus marumoreus,multiple transformation,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf3.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved