請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67644
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊志忠 | |
dc.contributor.author | Huang-Hui Lin | en |
dc.contributor.author | 林皇諱 | zh_TW |
dc.date.accessioned | 2021-06-17T01:41:51Z | - |
dc.date.available | 2020-07-31 | |
dc.date.copyright | 2017-07-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-27 | |
dc.identifier.citation | [1] Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors. Nature, 432, 488-492.(2004)
[2] Liu, H.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices. Superlattices and Microstructures, 48, 458-484.(2010) [3] Tadatsugu, M. Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Sci. Techno. 20, S35-S44. (2005) [4] Exarhos, G. J.; Zhou, X.-D. Discovery-based Design of Transparent Conducting Oxide Films. Thin Solid Films,515, 7025-7052. (2007) [5] Agura, H.; Suzuki, A.; Matsushita, T.; Aoki, T.; Okuda, M. Low Resistivity Transparent Conducting Al-doped ZnO Films Prepared by Pulsed Laser Deposition. Thin Solid Films, 445, 263-267. (2003) [6] Suzuki, A.; Matsushita, T.; Wada, N.; Sakamoto, Y.; Okuda, M. Transparent Conducting Al-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys.35, L56-L59. (1996) [7] Bhosle, V.; Tiwari, A.; Narayan, J. Electrical Properties of Transparent and Conducting Ga Doped ZnO. J. Appl. Phys., 100, 033713. (2006) [8] Ken, N.; Kentaro, T.; Mitsuhiko, S.; Daisuke, N.; Norikazu, I.; Masayuki, S.; Hidemi, T.; Hitoshi, T.; Paul, F.; Koji, M.; Kakuya, I.; Akimasa, Y.; Shigeru, N. Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes. Jpn. J. Appl. Phys., 43, L180-L182. (2004) [9] Zhao, J. L.; Sun, X. W.; Ryu, H.; Moon, Y. B. Thermally Stable Transparent Conducting and Highly Infrared Reflective Ga-doped ZnO Thin Films by Metal Organic Chemical Vapor Deposition. Opt. Materials, 33, 768-772. (2011) [10] Shin, S. W.; Sim, K. U.; Moon, J.-H.; Kim, J. H. The Effect of Processing Parameters on The Properties of Ga-doped ZnO Thin Films by RF Magnetron Sputtering. Curr. Appl. Phys. 10, S274-S277. (2010) [11] Park T Y, Choi Y S, Kang J W, Jeong J H, Park S J, Jeon D M, Kim J W, Kim Y C Appl. Phys. Lett. 96 051124.(2010) [12] Yang J, Pei Y, Fan B, Huang S, Chen Z, Tong C, Luo H, Liang J, Wang G IEEE Electron Device Lett. 36 372. (2015) [13] Lin X, Luo H, Jia X, Wang J, Zhou J, Jiang Z, Pan L, Huang S, Chen X Organic Electronics 39 177. (2016) [14] Huang Q, Shen W, Fang X, Chen G, Yang Y, Huang J, Tan R, Song W ACS Appl. Mater. Interfaces 7 4299. (2015) [15] Look D C, Leedy K D Appl. Phys. Lett. 102 182107. (2013) [16] Naik G V, Shalaev V M, Boltasseva A Adv. Mater. 25 3264. (2013) [17] Nader N, Vangala S, Hendrickson J R, Leedy K D, Look D C, Guo J, Cleary J W J. Appl. Phys. 118 173106. (2015) [18] Kim J, Dutta A, Memarzadeh B, Kildishev A V, Mosallaei H, Boltasseva A ACS Photonics 2 1224. (2015) [19] Premkumar T, Zhou Y S, Lu Y F, Baskar K ACS Appl. Mater. Interfaces 2 2863. (2010) [20] Hsu C L, Su C W, Hsueh T J RSC Adv. 4 2980. (2014) [21] Zhong J, Chen H, Saraf G, Lu Y, Choi C K, Song J J, Mackie D M, Shen H Appl. Phys. Lett. 90 203515. (2007) [22] Sheu J K, Lu Y S, Lee M L, Lai W C, Kuo C H, Tun C J Appl. Phys. Lett. 90 263511. (2007) [23] Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P Nano letters 8 1501. (2008) [24] Cheng C P, Lin P H, Hung Y J, Hsu S S, Chen L Y, Cheng Y W, Ke M Y, Huang Y Y, 90 263511. (2007) [25] J.R. Bellingham, W.A. Phillips, and C.J. Adkins, “Intrinsic performance limits in transparent conducting oxides,” J. Mater. Sci. Lett. 11, 263 (1992). [26] N. Taga, H. Odaka, Y. Shigesato, and I. Yasui, “Electrical properties of heteroepitaxial grown tin‐doped indium oxide films,” J. Appl. Phys. 80, 978 (1996). [27] M. Bender, J. Trube, and J. Stollenwerk, “Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology,” Thin Solid Films 354, 100 (1999). [28] T. Minami, “New n-type transparent conducting oxides,” MRS Bull. 25, 38 (2000). [29] N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, and H. Hosono, “Phonon scattering in electron transport phenomena of ITO films,” Vacuum 59, 492 (2000). [30] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D Appl. Phys. 34, 3097 (2001). [31] H. Odaka, Y. Shigesato, T. Murakani, and S. Iwata, “Electronic Structure Analyses of Sn-doped In2O3,” Japan. J. Appl. Phys. 40, 3231 (2001). [32] B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71 (2002). [33] H. C. Lee, and O. O. Park, “Behaviors of carrier concentrations and mobilities in indium–tin oxide thin films by DC magnetron sputtering at various oxygen flow rates,” Vacuum 77, 69 (2004). [34] H.C. Lee, and O. O. Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering,” Vacuum 75, 275 (2004). [35] H.C. Lee, “Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions,” Appl. Surf. Sci. 252, 3428 (2006). [36] H. Han, J. W. Mayer, T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99, 123711 (2006). [37] Y. Shigesato, D.C. Paine, T. E. Haynes, “Study of the effect of ion implantation on the electrical and microstructural properties of tin‐doped indium oxide thin films,” J. Appl. Phys. 73, 3805 (1993). [38] Y. Shigesato, and D.C. Paine, “Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide,” Appl. Phys. Lett. 62, 1268 (1993). [39] T. M. Ratcheva, M. D. Nanova, L. V. Vassilev, and M. G. Mikhailov, “Properties of In2O3: Te films prepared by the spraying method,” Thin Solid Films 139, 189 (1986). [40] J. Bruneaux, H. Cachet, M. Froment, and A. Messad, “Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping,” Thin Solid Films 197, 129 (1991). [41] S. Dasgupta, M. Lukas, K. Dossel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80, 085425 (2009) . [42] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516, 4620 (2008). [43] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films 516, 5829 (2008). [44] H. C. Lee, “Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions,” Appl. Surf. Sci. 252, 3428 (2006). [45] C. W. Bunn, “A Comparative Review of ZnO Materials and Devices,”Proc. Phys. Soc. London 47, 836 (1935). [46] T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev. 142, 570 (1966). [47] E. Mollwo, and Z. Angew. “Dispersion, absorption and thermal emission of zinc-oxide crystals,” Phys. 6, 257 (1954). [48] G. Galli, and J. E. Coker, “EPITAXIAL ZnO ON SAPPHIRE,” Appl. Phys. Lett. 16, 439 (1970). [49] D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15, 86 (1960). [50] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering in ZnO,” Phys. Rev. B 60, 2340 (1999). [51] Y. Z. Zhu, G. D. Chen, Honggang Ye, Aron, Walsh, C. Y. Moon, and Su-Huai Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B 77, 245209 (2008). [52] André Schleife, Claudia Röd, Jürgen Furthmüller, and Friedhelm Bechstedt, “Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations,” New J. Phys. 13, 085012 (2011). [53] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth 260, 166 (2004). [54] J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, “ZnO growth by chemical vapour transportJ. Cryst. Growth,” 207, 30 (1999). [55] D. C. Look, Mater. “Recent advances in ZnO materials and devices,”Sci. Eng. B 80, 381 (2001). [56] D. M. Bagnall1, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230 (1997). [57] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering,” Adv. Mater. 18, 2720 (2006). [58] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth 225, 110 (2001). [59] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455 (2005). [60] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84, 3654 (2004). [61] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932 (2004). [62] H. P. Maruska and J. J. Tietjen, “THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN,” Appl. Phys. Lett. 15, 327 (1969). [63] C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi B 244,3027 (2007). [64] U. Rössler, “Semiconductors: II-VI and I-VII Compounds; Semimagnetic Compounds,” Landolt-Börnstein, New Series III/41B (1999). [65] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, J. M. and M. Geurts, “Zinc Oxide” Springer, 204,682-688 (2010). [66] C. Klingshirn, “ZnO: Material, Physics and Applications,” Chem. Phys. Chem. 8, 782 (2007). [67] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl3(6H2O) as New Doping Material,” Jpn. J. Appl. Phys. 36, L1078 (1997). [68] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD,” Thin Solid Films 260, 19 (1995). [69] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films 427, 401 (2003). [70] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition,” J. Cryst. Growth 259, 130 (2003). [71] B.C. Jiao, X.D. Zhang, C.C. Wei, J. Sun, Q. Huang, Y. Zhao, “Effect of acetic acid on ZnO:In transparent conductive oxide prepared by ultrasonic spray pyrolysis,” Thin Solid Films 520, 1323 (2011). [72] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 77, 3761 (2000). [73] J. Hu and R. G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells,” Solar Cells 30, 437 (1991). [74] M. Olvera, S. Tirado Guerra, A. Maldonado, and L. CastaCeda, “Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2346 (2006). [75] G. F. Neumark, ”Achievement of well conducting wide band-gap semiconductors: Role of solubility and of nonequilibrium impurity incorporation,” Phys. Rev. Lett. 62, 1800 (1989). [76] W. Walukiewicz, “Defect formation and diffusion in heavily dopedsemiconductors,” Phys. Rev. B 50, 5221 (1994). [77] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, “First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe,” Phys. Rev. B 47, 9425 (1993). [78] O. F. Schirmer, and D. Zwingel, “The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide,” J. Phys. Chem. Solids 29, 1407 (1968). [79] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li‐doped ZnO films,” J. Vac. Sci. Technol. A 9, 286 (1991). [80] Y. Kanai, “Admittance Spectroscopy of Cu-Doped ZnO Crystals,” Jpn. J. Appl. Phys., Part 1 30, 703 (1991). [81] Yao Y F, Shen C H, Chen W F, Shih P Y, Chou W H, Su C Y, Chen H S, Liao C H, Chang W M, Kiang Y W, Yang C C 2014 Journal of Nanomaterials 11. (2014) [82] Sakurai M, Wang Y G, Uemura T, Aono M Nanotechnology 20 155203.(2009) [83] Zheng Z, Lim Z S, Peng Y, You L, Chen L, Wang J Scientific Reports 3 2434.(2013) [84] Xu S, Wang Z L Nano Research 4 1013. (2011) [85] Sunandan B, Joydeep D Sci. Technol. Adv. Mat. 10 013001.(2009) [86] Gao T, Wang T J. Nanosci. Nanotechnol. 5 1120.(2005) [87] Park W I, Yi G C, Kim M, Pennycook S J Adv. Mater. 14 1841. (2002) [88] Park W I, Kim D H, Jung S W, Yi G C Appl. Phys. Lett. 80 4232. (2002) [89] Wagner R S, Ellis W C Appl. Phys. Lett. 4 89. (1964) [90] Jebril S, Kuhlmann H, Müller S, Ronning C, Kienle L, Duppel V, Mishra Y K Crystal Growth & Design 10 2842. (2010) [91] Chu F H, Huang C W, Hsin C L, Wang C W, Yu S Y, Yeh P H, Wu W W Nanoscale 4 1471. (2012) [92] Bhosle V, Tiwari A, Narayan J J. Appl. Phys. 100 033713. (2006) [93] Chiu H M, Tsai H J, Hsu W K, Wu J M Cryst. Eng. Comm. 15 5764. (2013) [94] Hsu H C, Chen D H Nanotechnology 21 285603. (2010) [95] Yao Y F, Tu C G, Chang T W, Chen H T, Weng C M, Su C Y, Hsieh C, Liao C H, Kiang Y W, Yang C C ACS Appl. Mater. Interfaces 7 10525. (2015) [96] Yao Y F, Lin C H, Hsieh C, Su C Y, Zhu E, Yang S, Weng C. M, Su M Y, Tsai M C, Wu S S, Chen S H, Tu C G, Chen H T, Kiang Y W, Yang C C Optics Express 23 32274. (2015) [97] Gottschalch V, Wagner G, Bauer J, Paetzelt H, Shirnow M J. Cryst. Growth 310 5123. (2008) [98] Madras P, Dailey E, Drucker J Nano letters 9 3826. (2009) [99] J. S. Kim, R. H. Friend, and F. Cacialli, J. Appl. Phys. 86(5), 2774-2777 (1999). [100] M. Yamada and K. Kishima, IEEE. 27(10), 828 - 829 (1991). [101] A. Rosenauer and M. Schowalter, “STEMSIM–a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging,” Springer Link. 120, 170-172 (2007). [102] R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe1, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” NATURE MATERIALS. 10, 278-281 (2011). [103] E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori and Y. Kondo, “Visualization of Light Elements at Ultrahigh Resolution by STEM Annular Bright Field Microscopy,” Microsc Microanal. 15(2), 164-165 (2009). [104] J. L. Rouviere, J. L. WeyherM, Seelmann-EggebertS, Porowski, “Polarity determination for GaN films grown on (0001) sapphire and high pressure-grown GaN single crystals,” Appl. Phys. Lett. 73(5), 668-670 (1998). [105] D. P. Nicholls , R. Vincent , D. Cherns , Y. Sun and M. N. R. Ashfold, “Polarity determination of zinc oxide nanorods by defocused convergent-beam electron diffraction,” Philosophical Magazine Letters, 87(6), 417-421 (2007). [106] G. BINNIG and H. ROHRER, “SCANNING TUNNELING MICROSCOPY,” Surface Science 126, 236-244 (1983). [107] A. MIKKELSEN, N. SKÖLD, L. OUATTARA,M. BORGSTRÖM, J.N. ANDERSEN, L.SAMUELSON ,W.SEIFERT and E.LUNDGREN, “Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy,” nature materials 3, 519-523 (2004). [108] C. Kisielowskia,C.J.D. Hetheringtona,Y.C. Wanga,R. Kilaasa,M.A. O’Keefea ,A. Thustd, “Imaging columns of the light elements carbon,nitrogen and oxygen with sub Angstrom resolution,” Ultramicroscopy 89, 243-263 (2001). [109] M. R. Wagner, T. P. Bartel, R. Kirste, and A. Hoffmann, “Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition,” PHYSICAL REVIEW B 79, 035307-1-035307-7(2009). [110] M. d. l. Mata,C. Magen, J. Gazquez, M. I. B.Utama, M. Heiss, S. Lopatin, F. Furtmayr, C. J. Fernández-Rojas, B. Peng, J. Ramon Morante, R. Rurali, M. Eickhoff, A. F. Morral, Q. Xiong, and J. Arbiol, “Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis,” Nano Lett. 12, 2579-2586 (2012). [111] R. S. Wagner and W. C. Ellis, “Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89 (1964). [112] K. A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson, and W. Seifert, “Failure of the Vapor−Liquid−Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires,” Nano Lett. 5(4), 761-764 (2005). [113] V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner, “New Mode of Vapor-Liquid-Solid Nanowire Growth,” Nano Lett. 11, 1247-1253 (2011). [114] S.R. Hejazi , H.R. Madaah Hosseini , M. Sasani Ghamsari , “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism,” Journal of Alloys and Compounds. 455, 353–357 (2008). [115] V. Sallet, C. Sartel, C. Vilar, A. Lusson, and P. Galtier, “Opposite crystal polarities observed in spontaneous and vapour-liquid-solid grown ZnO nanowires,” Appl. Phys. Lett. 102, 182103-1-182103-4 (2013). [116] H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-Seeded Growth Mechanism of ZnO Nanowires,” Cryst. Growth Des. 13, 572−580 (2013). [117] G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. D. Bouravleuv, K. Durose, Y. Y. Proskuryakov, Budhikar Mendes, L. Bowen, M. A. Kaliteevski, R. A. Abram, and Dagou Zeze, “Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy,” PHYSICAL REVIEW B. 82, 035302-1−035302-6 (2010). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67644 | - |
dc.description.abstract | 利用球面相差修正的掃描式穿透電子顯微鏡中環形明場拍攝技術,我們研究生長於不同極性基板上氧化鎵鋅奈米針與薄膜之極性,我們分別使用鎵極性的氮化鎵、氮極性的氮化鎵、矽極性的碳化矽與碳極性的碳化矽作為基板。我們利用銀的奈米顆粒作為催化劑並通過氣液固生長法來成長氧化鎵鋅奈米針,當氧化鎵鋅奈米針的生長溫度達到攝氏450度時,大部分的銀奈米顆粒會整顆熔融成為生長所需之催化劑,在這種溫度下,氧化鎵鋅奈米針會直接生長在基板上。當氧化鎵鋅奈米針生長溫度為攝氏350度時,大部份銀奈米顆粒只有上半部熔融,在這種情況下氧化鎵鋅奈米針會生長在下半部未熔融的銀奈米顆粒上。氧化鎵鋅薄膜是使用氣固生長法來生長,我們發現經由氣固生長法的薄膜其極性與基板的極性類似,而經由氣液固生長法的奈米針無論在那種極性的基板上全部都是鋅極性。換言之,氧化鎵鋅薄膜在鎵極性的氮化鎵或矽極性的碳化矽(氮極性的氮化鎵或碳極性的碳化矽) 是鋅極性(氧極性)。然而,在所有上述的基板上,無論奈米針是否直接接觸到基板,氧化鎵鋅奈米針都是鋅極性。這樣的結果,其主要原因是氧原子在氣液固生長法的參與反應途徑與其他原子不同,氧原子會由固液交界面進入參與反應。 | zh_TW |
dc.description.abstract | By using the annular bright field imaging technique in aberration corrected scanning tunneling electron microscopy observations, we study the polarities of GaZnO nanoneedles (NNs) and thin films grown on templates of different polarities, including Ga-face GaN, N-face GaN, Si-face SiC, and C-face SiC. The GaZnO NNs are formed through the vapor-liquid-solid (VLS) process by using Ag nanoparticles (NPs) as growth catalyst. When GaZnO NNs are grown at 450 oC, most Ag NPs can be completely melted for serving as growth catalyst. In this situation, GaZnO NNs are precipitated directly onto the used template. When GaZnO NNs are grown at 350 oC, only the upper portion of an Ag NP is melted for serving as growth catalyst. In this situation, a GaZnO NN is precipitated onto the un-melted lower portion of the Ag NP. The GaZnO thin films are deposited through the vapor-solid process. It is found that although the polarity of a GaZnO thin film follows that of the template, the GaZnO NNs grown under all the conditions are Zn-polar. In other words, the polarity of a GaZnO thin film on Ga-face GaN or Si-face SiC (N-face GaN or C-face SiC) is Zn-polar (O-polar). Nevertheless, on all the aforementioned templates, GaZnO NNs are Zn-polar, no matter whether they directly contact the templates. This result is attributed to the different incorporation channel of the non-metal constituent atoms. Oxygen atoms incorporate the interaction from the liquid-solid interface in the VLS growth process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:41:51Z (GMT). No. of bitstreams: 1 ntu-106-R03941084-1.pdf: 6251797 bytes, checksum: fdd4145fea42774c130a79c1b9a6ffac (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Content
口試委員會審定書 I 誌謝 II 摘要 III ABSTRACT IV CHAPTER 1 INTRODUCTION 1 1.1 TRANSPARENT CONDUCTING OXIDE 1 1.2 THE ELECTRICAL PROPERTIES OF TCO 2 1.3 GENERAL REVIEWS ON ZNO AS A LIGHT-EMITTING MATERIAL 3 1.3.1 CRYSTAL STRUCTURES 4 1.4 DOPING OF ZNO 5 1.4.1 N-TYPE DOPING 5 1.4.2 P-TYPE DOPING 7 1.5 ZNO NANOWIRE GROWTH 7 1.6 POLARITY 9 1.7 RESEARCH MOTIVATIONS AND THESIS ORGANIZATION 10 CHAPTER 2 ANALYSIS METHODS 19 2.1 SPECIMEN PREPARATION FOR CROSS-SECTION TRANSMISSION ELECTRON MICROSCOPY 19 2.2 HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY 20 2.3 HIGH-ANGLE ANNULAR DARK-FIELD (HAADF) IMAGE 25 2.4 ANNULAR BRIGHT FIELD (ABF) 26 2.5 ENERGY DISPERSIVE X-RAY SPECTROSCOPY (EDX) 27 2.6 SCANNING ELECTRON MICROSCOPY (SEM) 28 CHAPTER 3 ANALYSIS RESULTS OF CRYSTAL POLARITY OF GA-DOPED ZNO NANONEEDLES 41 3.1 SAMPLE GROWTH CONDITIONS 41 3.2 GAZNO NANONEEDLES GROWTH ON GAN TEMPLATES AT 450 ͦ C 42 3.3 GAZNO NANONEEDLES GROWTH ON SIC TEMPLATES AT 450 ͦ C 43 3.4 GAZNO NANONEEDLES GROWTH ON GAN TEMPLATES AT 350 ͦ C 45 3.5 GAZNO NANONEEDLES GROWTH ON SIC TEMPLATES AT 350 ͦ C 46 CHAPTER 4 DISCUSSIONS 77 CHAPTER 5 CONCLUSIONS 83 REFERENCES 84 | |
dc.language.iso | en | |
dc.title | 生長於不同極性基板上摻鎵氧化鋅奈米針極性的電子顯微研究 | zh_TW |
dc.title | Transmission Electron Microscopy Studies on the Polarities of Ga-doped ZnO Nanoneedles Grown on Substrates of Different Polarities | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江衍偉,黃建璋,陳奕君,吳肇欣 | |
dc.subject.keyword | 電子顯微鏡,摻鎵氧化鋅,極性,原子排列, | zh_TW |
dc.subject.keyword | TEM,GaZnO,polarity,atomic arrengement, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201702074 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-28 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。