請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李克強(Eric Lee) | |
| dc.contributor.author | Li-Ying Chen | en |
| dc.contributor.author | 陳莉瑩 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:41:36Z | - |
| dc.date.available | 2020-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-28 | |
| dc.identifier.citation | 1. Pethig, R., Review—Where Is Dielectrophoresis (DEP) Going? Journal of The Electrochemical Society, 2017. 164(5): p. B3049-B3055.
2. Velev, O.D. and K.H. Bhatt, On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter, 2006. 2(9): p. 738-750. 3. Bhattacharya, S., et al., Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem, 2014. 406(7): p. 1855-65. 4. Su, H.W., J.L. Prieto, and J. Voldman, Rapid dielectrophoretic characterization of single cells using the dielectrophoretic spring. Lab Chip, 2013. 13(20): p. 4109-17. 5. Nakano, A. and A. Ros, Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis, 2013. 34(7): p. 1085-96. 6. Du, F., et al., Intensification of cross-flow membrane filtration using dielectrophoresis with a novel electrode configuration. Journal of Membrane Science, 2013. 448(0): p. 256-261. 7. Cai, D., et al., An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. Lab Chip, 2014. 14(20): p. 3917-24. 8. Vladisavljevic, G.T., et al., Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev, 2013. 65(11-12): p. 1626-63. 9. Yang, S.-M., et al., Droplet-based dielectrophoresis device for on-chip nanomedicine fabrication and improved gene delivery efficiency. Microfluidics and Nanofluidics, 2015: p. 1-9. 10. Shen, B., et al., Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide. Electrophoresis, 2015. 36(2): p. 255-62. 11. Huang, C.J., et al., Dielectrophoretic discrimination of cancer cells on a microchip. Applied Physics Letters, 2014. 105(14): p. 143702. 12. Qian, C., et al., Dielectrophoresis for Bioparticle Manipulation. International Journal of Molecular Sciences, 2014. 15(10): p. 18281-18309. 13. Viefhues, M., et al., Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines. Lab Chip, 2013. 13(15): p. 3111-8. 14. Von Hippel, A.R., Dielectric materials and applications. Artech House microwave library. 1995, Boston: Artech House. 15. Bohinski, R.C., P. Melius, and M.E. Friedman, Modern concepts in biochemistry. Vol. 76. 1987: Allyn and Bacon Boston. 16. Pohl, H.A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 1951. 22(7): p. 869-871. 17. Zhang, C., et al., Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem, 2010. 396(1): p. 401-20. 18. Voldman, J., Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng., 2006. 8: p. 425-454. 19. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis, 2014. 35(5): p. 691-713. 20. Zellner, P., et al., 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. Electrophoresis, 2015. 36(2): p. 277-83. 21. Qian, C., et al., Dielectrophoresis for bioparticle manipulation. International Journal of Molecular Sciences, 2014. 15(10): p. 18281-309. 22. Lo, Y.J., et al., Measurement of the Clausius-Mossotti factor of generalized dielectrophoresis. Applied Physics Letters, 2014. 104(8): p. 083701. 23. Galler, K., et al., Making a big thing of a small cell--recent advances in single cell analysis. Analyst, 2014. 139(6): p. 1237-73. 24. El-Ali, J., P.K. Sorger, and K.F. Jensen, Cells on chips. Nature, 2006. 442(7101): p. 403-411. 25. Wei, Z., et al., Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting. Anal Chem, 2014. 86(20): p. 10215-22. 26. Rothemund, P.W.K., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440(7082): p. 297-302. 27. Mikkila, J., et al., Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett, 2014. 14(4): p. 2196-200. 28. Kuzyk, A., et al., Dielectrophoretic Trapping of DNA Origami. Small, 2008. 4(4): p. 447-450. 29. Ahadian, S., et al., Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on a Chip, 2014. 14(19): p. 3690-4. 30. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011: p. 313-319. 31. Ong, J.M. and L. da Cruz, A review and update on the current status of stem cell therapy and the retina. British Medical Bulletin, 2012. 32. Bhasin, A., et al., Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg, 2013. 115(7): p. 1003-8. 33. Hoppe, P.S., D.L. Coutu, and T. Schroeder, Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol, 2014. 16(10): p. 919-27. 34. Pethig, R., et al., Dielectrophoresis: A Review of Applications for Stem Cell Research. Journal of Biomedicine and Biotechnology, 2010. 2010. 35. Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. Electrokinetic and Colloid Transport Phenomena. 2005: John Wiley & Sons, Inc. 36. Shaw, D.J., Introduction to Colloid and Surface Chemistry. Introduction to Colloid and Surface Chemistry (Fourth Edition), ed. D.J. Shaw. 1992, Oxford: Butterworth-Heinemann. 37. Everett, D.H. and D. Everett, Basic principles of colloid science. Vol. 144. 1988: Royal Society of Chemistry London. 38. Hunter, R., Foundations of Colloid Science. Hunter, RJ, Foundations of Colloid Science. Vol. 1. 1987: Oxford University Press. 39. Helmholtz, H., Studien über electrische Grenzschichten. Annalen der Physik und Chemie, 1879. 243(7): p. 337-382. 40. Gouy, G., Constitution of the electric charge at the surface of an electrolyte. J. phys, 1910. 9(4): p. 457-467. 41. Chapman, D.L., A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481. 42. Stern, O., Zur Theorie Der Eleltrolytischen Doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21-22): p. 508-516. 43. Overbeek, J.T.G., Quantitative interpretation of the electrophoretic velocity of colloids. Advances in Colloid Science, 1950. 3: p. 97. 44. Jones, T.B., Electromechanics of Particles. 1995, New York: Cambridge University Press. 45. Hughes, M.P., Nanoelectromechanics in Engineering and Biology. 2002, Boca Raton: CRC Press. 46. O'Brien, R.W., The response of a colloidal suspension to an alternating electric field. Advances in Colloid and Interface Science, 1982. 16(1): p. 281-320. 47. Zhao, H. and H.H. Bau, The polarization of a nanoparticle surrounded by a thick electric double layer. J Colloid Interface Sci, 2009. 333(2): p. 663-71. 48. Zhao, H., Double-layer polarization of a non-conducting particle in an alternating current field with applications to dielectrophoresis. Electrophoresis, 2011. 32(17): p. 2232-44. 49. Delgado, A.V., et al., Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 2007. 309(2): p. 194-224. 50. Dingari, N.N. and C.R. Buie, Theoretical investigation of bacteria polarizability under direct current electric fields. Langmuir, 2014. 30(15): p. 4375-84. 51. O'Konski, C.T., Electric Properties of Macromolecules. V. Theory of Ionic Polarization in Polyelectrolytes. The Journal of Physical Chemistry, 1960. 64(5): p. 605-619. 52. Shilov, V.N., et al., Polarization of the Electrical Double Layer. Time Evolution after Application of an Electric Field. Journal of Colloid and Interface Science, 2000. 232(1): p. 141-148. 53. Dukhin, S.S. and V.N. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes. 1974, New York: Wiley. 54. Shilov, V.N. and S.S. Dukhin, Theory of Low-Frequency Dispersion of Dielectric Permittivity in Suspensions of Spherical Colloidal Particles Due to Double-Layer Polarization. Colloid Journal-Ussr, 1970. 32(2): p. 245-&. 55. Zhou, H., et al., Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics. J Colloid Interface Sci, 2005. 285(2): p. 845-56. 56. Heard, D. and G. Seaman, The influence of pH and ionic strength on the electrokinetic stability of the human erythrocyte membrane. The Journal of general physiology, 1960. 43(3): p. 635-654. 57. Wilkins, D., R. Ottewill, and A. Bangham, On the flocculation of sheep leucocytes: I. Electrophoretic studies. Journal of Theoretical Biology, 1962. 2(2): p. 165-175. 58. Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry. 2008: Macmillan. 59. Wilson, K. and J. Walker, Principles and techniques of biochemistry and molecular biology. 2010: Cambridge university press. 60. Ninham, B.W. and V.A. Parsegian, Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. Journal of theoretical biology, 1971. 31(3): p. 405-428. 61. Chan, D., T.W. Healy, and L.R. White, Electrical double layer interactions under regulation by surface ionization equilibria–dissimilar amphoteric surfaces. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1976. 72: p. 2844-2865. 62. Chan, D., et al., Regulation of surface potential at amphoteric surfaces during particle–particle interaction. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1975. 71: p. 1046-1057. 63. Carnie, S.L. and D.Y. Chan, Interaction free energy between identical spherical colloidal particles: The linearized Poisson-Boltzmann theory. Journal of colloid and interface science, 1993. 155(2): p. 297-312. 64. Carnie, S.L. and D.Y. Chan, Interaction free energy between plates with charge regulation: a linearized model. Journal of colloid and interface science, 1993. 161(1): p. 260-264. 65. Carnie, S.L., D.Y. Chan, and J. Stankovich, Computation of forces between spherical colloidal particles: nonlinear Poisson-Boltzmann theory. Journal of colloid and interface science, 1994. 165(1): p. 116-128. 66. Chan, D.Y., et al., Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers. Journal of colloid and interface science, 2006. 296(1): p. 150-158. 67. Davis, J.A., R.O. James, and J.O. Leckie, Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. Journal of colloid and interface science, 1978. 63(3): p. 480-499. 68. Krozel, J. and D. Saville, Electrostatic interactions between two spheres: solutions of the Debye-Hückel equation with a charge regulation boundary condition. Journal of colloid and interface science, 1992. 150(2): p. 365-373. 69. Usui, S., Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–Chapman–Stern–Grahame model. Journal of colloid and interface science, 2004. 280(1): p. 113-119. 70. Usui, S., Electrical double-layer interaction between oppositely charged dissimilar oxide surfaces with charge regulation and Stern–Grahame layers. Journal of colloid and interface science, 2008. 320(1): p. 353-359. 71. Lee, E., F.Y. Yen, and J.P. Hsu, Electrophoretic mobility of concentrated spheres with a charge‐regulated surface. Electrophoresis, 2000. 21(3): p. 475-480. 72. Lou, J., C.-Y. Shih, and E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with charge-regulated surface: Polarization effect with nonlinear Poisson− Boltzmann equation. Langmuir, 2009. 26(1): p. 47-55. 73. Tang, Y.-P., et al., Electrophoretic motion of a charge-regulated sphere normal to a plane. Journal of colloid and interface science, 2001. 242(1): p. 121-126. 74. Tsai, P., H. Fang, and E. Lee, Electrophoresis of a Charge-Regulated Sphere Normal to an Air–Water Interface. The Journal of Physical Chemistry B, 2011. 115(20): p. 6484-6494. 75. Ohshima, H., Theory of colloid and interfacial electric phenomena. Vol. 12. 2006: Academic Press. 76. Ohshima, H. and T. Kondo, Electrostatic repulsion of ion penetrable charged membranes: Role of Donnan potential. Journal of theoretical biology, 1987. 128(2): p. 187-194. 77. Ohshima, H. and T. Kondo, Membrane potential and Donnan potential. Biophysical chemistry, 1988. 29(3): p. 277-281. 78. Morita, K., et al., Electrophoretic behavior of rat lymphocyte subpopulations. Journal of colloid and interface science, 1991. 147(2): p. 457-461. 79. Nakamura, M., H. Ohshima, and T. Kondo, Charge distribution in the surface region of chicken and goose erythrocytes. Colloids and Surfaces B: Biointerfaces, 1994. 2(5): p. 445-449. 80. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74(0): p. 1607-1626. 81. Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 1983: Springer Science & Business Media. 82. Zhao, H. and H.H. Bau, Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field. Langmuir, 2008. 24(12): p. 6050-6059. 83. Lee, E., C.-H. Fu, and J.-P. Hsu, Dynamic electrophoretic mobility of a concentrated dispersion of particles with a charge-regulated surface at arbitrary potential. Journal of colloid and interface science, 2002. 250(2): p. 327-336. 84. Sonnefeld, J., M. Löbbus, and W. Vogelsberger, Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 195(1): p. 215-225. 85. Hunter, R.J., Foundations of Colloid Science. Vol. 2. 1989, New York: Oxford University Press. 86. Zhao, K.S. and K.J. He, Dielectric relaxation of suspensions of nanoscale particles surrounded by a thick electric double layer. Physical Review B, 2006. 74(20): p. 205319. 87. Tsai, P. and E. Lee, Gel electrophoresis in suspensions of charged spherical particles. Soft Matter, 2011. 7(12): p. 5789-5798. 88. He, Y.Y. and E. Lee, Electrophoresis in concentrated dispersions of charged porous spheres. Chemical Engineering Science, 2008. 63(23): p. 5719-5727. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67639 | - |
| dc.description.abstract | 本研究以表面帶有官能基的硬球為模型,探討其介電泳行為。這系統可模擬細胞等等的生物粒子如DNA、RNA,蛋白質等等,在生化方面有極大的應用價值。為使之能有更廣泛的應用,將與之結合理論及實驗,做出前瞻性的研究。
近年來由於微奈米科技蓬勃發展,進而帶動介電泳的快速發展。介電泳能夠在極小的距離下產生極大的電場,不僅能夠分離粒子,在生化方面,更能利用此不均勻電場,使生物細胞免於在受高壓電影響而死亡,亦能達成分離或捕捉的目的,對各方面研究發展都是非常大的進步。 先前所探討的大多為具固定電位之粒子(例如硬球以及液滴等等),即不會隨外界環境而改變其電位,然而此假設並不符合實際應用的情況,因此討論具電荷調節的硬球粒子,且為兩性粒子,亦即官能基可因環境帶有正電或負電,和以往僅能解離氫離子的模型相比,使用這個廣義的模型,對系統描述更詳細並且更接近真實生物粒子。 本研究利用假性光譜法,探討在介電泳下的行為。由決定粒子速度的關鍵因子-dipole coefficient,代表粒子在介質中的有效極化程度,探討由電雙層厚度、帶電量、佩萊特常數、頻率、介電常數等等研究其與外加電場的交互作用以及dipole coefficient的變化。 粒子移動的泳動結果,會影響電雙層,進而影響dipole coefficient與有效偶極矩強度。由於高頻的時候,粒子移動速度太快,帶電量幾乎不影響,僅由粒子和介質的介電常數決定結果,且介於-0.5至1之間,與實驗數據比對相符,也驗證了研究的正確性與實用性。 利用這個研究以及其中的參數,可幫助實驗學者設計更完善的介電泳,也可預測粒子分離情形,對介電泳相關學者提供非常大的幫助。 | zh_TW |
| dc.description.abstract | Dielectrophoresis (DEP), the migration of a dielectric particle in a non-uniform electric field, has grabbed a great deal of interest in micro/nano-technologies such as microfluidic devices, biomaterial and lab-on-a-chip. However, relevant theoretical researches are still quite limited. Mostly in the branch of constant zeta potential case. Here we introduce a general type of particle, the charge-regulated particle, which models cell motion with surface functional groups in general.
In present study, the effective polarization, characterized by the dipole coefficient, of a charge regulated particle in an electrolyte solution subject to an alternating electric field is studied theoretically. Dipole coefficient is investigated as a function of the double-layer thickness, surface charge, Peclet number, permittivity and the electric-field frequency. We found, among other things, that the particle lectrophoretic motion is influenced significantly by the electric double layer deformation and polarizability. At high frequencies, the permittivity affects the dipole coefficient in the limited range ( -0.5 to 1) as observed in experimental data reported in literature. The good agreement between them leads to a conclusion that our model is able to predict the experimental results in general. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:41:36Z (GMT). No. of bitstreams: 1 ntu-106-R04524027-1.pdf: 4708604 bytes, checksum: 0005b5710eceb49817e2d63f602c55a2 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 II
摘要 IV Abstract VI 目錄 VIII 圖目錄 XII 表目錄 XVI 第 1 章 序論 1 1-1 介電泳概述 1 1-2 介電泳應用 9 1-3 膠體粒子與電雙層 14 1-4 介電泳力與偶極矩 22 1-5 介電泳與極化現象文獻回顧 26 1-6 電荷調節現象 30 1-7 研究目的與論文架構 31 第 2 章 理論分析 33 2-1 系統描述 33 2-2 電動力學方程組 34 2-3 平衡態與擾動態 36 2-4 邊界條件 43 2-5 系統變數前處理 51 2-6 粒子受力與電泳動度計算 59 2-7 偶極矩強度計算 64 第 3 章 數值方法 65 3-1 正交配位法 65 3-2 空間映射 69 3-3 牛頓(Newton-Raphson)迭代法 70 3-4 擾動態多變數聯立解 72 3-5 計算流程 74 第 4 章 結果與討論(電荷調節) 75 4-1 參數設定 75 4-2 程式比對 76 4-3 實驗比對 77 4-4 探討One-site and Two site差異 79 4-5 硬球表面調節電量影響 82 第 5 章 結果與討論(介電泳) 87 5-1 準確性比對 87 5-2 低頻/高頻區間─電雙層動態平衡 93 5-3 表面帶電量影響 97 5-4 電雙層影響 100 5-5 介電常數影響 106 5-6 佩特萊特數(Peclet number)影響 108 5-7 pH的影響 110 5-8 實驗比對 114 第 6 章 結論 116 參考文獻 117 符號說明 124 附錄 124 A-1 有效偶極矩與CM factor關係式推導 124 A-2 平均(time-average)介電泳力推導 129 A-3 無窮大系統計算方法 131 A-4常見物質Peclet number列表 134 A-5 場圖與其計算 136 | |
| dc.language.iso | zh-TW | |
| dc.subject | 介電泳 | zh_TW |
| dc.subject | 電雙層極化效應 | zh_TW |
| dc.subject | 有效偶極矩 | zh_TW |
| dc.subject | 電動力學 | zh_TW |
| dc.subject | 交流電場 | zh_TW |
| dc.subject | 介電質 | zh_TW |
| dc.subject | AC electric field | en |
| dc.subject | double layer polarization | en |
| dc.subject | dielectrophoresis | en |
| dc.subject | effective dipole moment | en |
| dc.subject | electrokinetics | en |
| dc.subject | dielectric | en |
| dc.title | 具電荷調節粒子於電解質溶液中之介電泳現象 | zh_TW |
| dc.title | Dielectrophoretic Phenomena of a charge-regulated particle in an Electrolyte Solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙玲(Ling Chao),游佳欣(Jiashing Yu),朱智瑋(Jhih-Wei Chu) | |
| dc.subject.keyword | 介電泳,介電質,交流電場,電動力學,有效偶極矩,電雙層極化效應, | zh_TW |
| dc.subject.keyword | dielectrophoresis,dielectric,AC electric field,electrokinetics,effective dipole moment,double layer polarization, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU201701835 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
